This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A131067 #12 Sep 08 2022 08:45:30 %S A131067 1,1,1,1,8,1,1,15,15,1,1,22,36,22,1,1,29,64,64,29,1,1,36,99,134,99,36, %T A131067 1,1,43,141,239,239,141,43,1,1,50,190,386,484,386,190,50,1,1,57,246, %U A131067 582,876,876,582,246,57,1,1,64,309,834,1464,1758,1464,834,309,64,1 %N A131067 Triangle read by rows: T(n,k) = 7*binomial(n,k) - 6 for 0 <= k <= n. %C A131067 Row sums = A131068: (1, 2, 10, 32, 82, 188, 406, ...), the binomial transform of (1, 1, 7, 7, 7, ...). %H A131067 G. C. Greubel, <a href="/A131067/b131067.txt">Rows n = 0..100 of triangle, flattened</a> %F A131067 G.f.: G(t,z) = (1-z-t*z+7*t*z^2)/((1-z)*(1-t*z)*(1-z-t*z)). - _Emeric Deutsch_, Jun 20 2007 %e A131067 First few rows of the triangle: %e A131067 1; %e A131067 1, 1; %e A131067 1, 8, 1; %e A131067 1, 15, 15, 1; %e A131067 1, 22, 36, 22, 1; %e A131067 1, 29, 64, 64, 29, 1; %e A131067 ... %p A131067 T := proc (n, k) if k <= n then 7*binomial(n, k)-6 else 0 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # _Emeric Deutsch_, Jun 20 2007 %t A131067 Table[7*Binomial[n, k] -6, {n,0,10}, {k,0,n}]//Flatten (* _G. C. Greubel_, Mar 12 2020 *) %o A131067 (Magma) [7*Binomial(n, k) -6: k in [0..n], n in [0..10]]; // _G. C. Greubel_, Mar 12 2020 %o A131067 (Sage) [[7*binomial(n, k) -6 for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Mar 12 2020 %Y A131067 Cf. A131064, A131066. %Y A131067 Sequence m*binomial(n,k) - (m-1): A007318 (m=1), A109128 (m=2), A131060 (m=3), A131061 (m=4), A131063 (m=5), A131065 (m=6), this sequence (m=7), A131068 (m=8). %K A131067 nonn,tabl %O A131067 0,5 %A A131067 _Gary W. Adamson_, Jun 13 2007 %E A131067 More terms from _Emeric Deutsch_, Jun 20 2007