cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131086 Triangle read by rows: T(n,k) = 2*binomial(n,k) - (-1)^(n-k) (0 <= k <= n).

This page as a plain text file.
%I A131086 #9 Nov 09 2019 01:11:42
%S A131086 1,3,1,1,5,1,3,5,7,1,1,9,11,9,1,3,9,21,19,11,1,1,13,29,41,29,13,1,3,
%T A131086 13,43,69,71,41,15,1,1,17,55,113,139,113,55,17,1,3,17,73,167,253,251,
%U A131086 169,71,19,1,1,21,89,241,419,505,419,241,89,21,1,3,21,111,329
%N A131086 Triangle read by rows: T(n,k) = 2*binomial(n,k) - (-1)^(n-k) (0 <= k <= n).
%C A131086 Row sums = A051049 starting (1, 4, 7, 16, 31, 64, ...).
%F A131086 G.f. = G(t,z) = (1 + 3z - tz - 2tz^2)/((1+z)(1-tz)(1-z-tz)). - _Emeric Deutsch_, Jun 21 2007
%e A131086 First few rows of the triangle are
%e A131086   1;
%e A131086   3,  1;
%e A131086   1,  5,  1;
%e A131086   3,  5,  7,  1;
%e A131086   1,  9, 11,  9,  1;
%e A131086   3,  9, 21, 19, 11,  1;
%e A131086   1, 13, 29, 41, 29, 13,  1;
%e A131086   ...
%p A131086 T := proc (n, k) if k <= n then 2*binomial(n, k)-(-1)^(n-k) else 0 end if end proc: for n from 0 to 11 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form - _Emeric Deutsch_, Jun 21 2007
%Y A131086 Cf. A000012, A051049.
%K A131086 nonn,tabl
%O A131086 0,2
%A A131086 _Gary W. Adamson_, Jun 14 2007
%E A131086 More terms from _Emeric Deutsch_, Jun 21 2007
%E A131086 Sequence corrected by _N. J. A. Sloane_, Sep 30 2007