A131106 Rectangular array read by antidiagonals: k objects are each put into one of n boxes, independently with equal probability. a(n, k) is the expected number of boxes with exactly one object (n, k >= 1). Sequence gives the numerators.
1, 1, 0, 1, 1, 0, 1, 4, 3, 0, 1, 3, 4, 1, 0, 1, 8, 27, 32, 5, 0, 1, 5, 48, 27, 80, 3, 0, 1, 12, 25, 256, 405, 64, 7, 0, 1, 7, 108, 125, 256, 729, 448, 1, 0, 1, 16, 147, 864, 3125, 6144, 5103, 1024, 9, 0, 1, 9, 64, 343, 6480, 3125, 28672, 2187, 256, 5, 0, 1, 20, 243, 2048, 12005
Offset: 1
Examples
Array begins: 1 0 0 0 0 0 ... 1 1 3/4 1/2 5/16 3/16 ... 1 4/3 4/3 32/27 80/81 64/81 ... ...
Crossrefs
Formula
a(n, k) = k*(1 - 1/n)^(k - 1). Let f(n, k, i) be the number of assignments such that exactly i boxes have exactly one object. For i > n, f(n, k, i) = 0. For i = k <= n, f(n, k, i) = n!/(n-k)!. Otherwise, f(n, k, i) = Sum_{j = 1..min(floor((k-i)/2), n-i)} A008299(k-i, j)*n!*binomial(k, i)/(n-i-j)!. Then a(n, k) = Sum_{i=1..min(n, k)} i*f(n, k, i)/n^k.
Comments