This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A131108 #20 Sep 08 2022 08:45:30 %S A131108 1,1,1,2,3,1,2,6,5,1,2,8,12,7,1,2,10,20,20,9,1,2,12,30,40,30,11,1,2, %T A131108 14,42,70,70,42,13,1,2,16,56,112,140,112,56,15,1,2,18,72,168,252,252, %U A131108 168,72,17,1,2,20,90,240,420,504,420,240,90,19,1 %N A131108 T(n,k) = 2*A007318(n,k) - A097806(n,k). %C A131108 Row sums give A095121. %C A131108 Triangle T(n,k), 0 <= k <= n, read by rows given by [1, 1, -2, 1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1,0,0,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - _Philippe Deléham_, Dec 18 2007 %H A131108 G. C. Greubel, <a href="/A131108/b131108.txt">Rows n = 0..100 of triangle, flattened</a> %F A131108 Twice Pascal's triangle minus A097806, the pairwise operator. %F A131108 G.f.: (1-x*y+x^2+x^2*y)/((-1+x+x*y)*(x*y-1)). - _R. J. Mathar_, Aug 11 2015 %e A131108 First few rows of the triangle are: %e A131108 1; %e A131108 1, 1; %e A131108 2, 3, 1; %e A131108 2, 6, 5, 1; %e A131108 2, 8, 12, 7, 1; %e A131108 2, 10, 20, 20, 9, 1; %e A131108 ... %p A131108 seq(seq( `if`(k=n-1, 2*n-1, `if`(k=n, 1, 2*binomial(n,k))), k=0..n), n=0..12); # _G. C. Greubel_, Nov 18 2019 %t A131108 Table[If[k==n-1, 2*n-1, If[k==n, 1, 2*Binomial[n, k]]], {n,0,12}, {k,0, n}]//Flatten (* _G. C. Greubel_, Nov 18 2019 *) %o A131108 (PARI) T(n,k) = if(k==n-1, 2*n-1, if(k==n, 1, 2*binomial(n,k))); \\ _G. C. Greubel_, Nov 18 2019 %o A131108 (Magma) %o A131108 function T(n,k) %o A131108 if k eq n-1 then return 2*n-1; %o A131108 elif k eq n then return 1; %o A131108 else return 2*Binomial(n,k); %o A131108 end if; %o A131108 return T; %o A131108 end function; %o A131108 [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Nov 18 2019 %o A131108 (Sage) %o A131108 @CachedFunction %o A131108 def T(n, k): %o A131108 if (k==n-1): return 2*n-1 %o A131108 elif (k==n): return 1 %o A131108 else: return 2*binomial(n,k) %o A131108 [[T(n, k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Nov 18 2019 %Y A131108 Cf. A007318, A095121, A097806. %K A131108 nonn,tabl %O A131108 0,4 %A A131108 _Gary W. Adamson_, Jun 15 2007 %E A131108 Corrected by _Philippe Deléham_, Dec 17 2007 %E A131108 More terms added and data corrected by _G. C. Greubel_, Nov 18 2019