This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A131222 #43 Jan 09 2024 12:18:46 %S A131222 1,0,1,0,3,1,0,14,9,1,0,90,83,18,1,0,744,870,275,30,1,0,7560,10474, %T A131222 4275,685,45,1,0,91440,143892,70924,14805,1435,63,1,0,1285200,2233356, %U A131222 1274196,324289,41160,2674,84,1 %N A131222 Exponential Riordan array [1, log((1-x)/(1-2x))]. %C A131222 This is also the matrix product of the unsigned Lah numbers and the Stirling cycle numbers. See also A079639 and A079640 for variants based on an (1,1)-offset of the number triangles. - _Peter Luschny_, Apr 12 2015 %C A131222 The Bell transform of A029767(n+1). For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 18 2016 %C A131222 Essentially the same as A079638. - _Peter Bala_, Feb 12 2022 %H A131222 Alois P. Heinz, <a href="/A131222/b131222.txt">Rows n = 0..140, flattened</a> %H A131222 Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Barry4/barry122.html">Exponential Riordan arrays and permutation enumeration</a>,Journal of Integer Sequences, Vol. 13 (2010). %F A131222 Row sums are A002866. %F A131222 Second column is A029767. %F A131222 T(n,m) = n! * Sum_{k=m..n} Stirling1(k,m)*2^(n-k)*binomial(n-1,k-1)/k!, n >= m >= 0. - _Vladimir Kruchinin_, Sep 27 2012 %e A131222 Number triangle starts: %e A131222 1, %e A131222 0, 1; %e A131222 0, 3, 1; %e A131222 0, 14, 9, 1; %e A131222 0, 90, 83, 18, 1; %e A131222 0, 744, 870, 275, 30, 1; %e A131222 ... %p A131222 RioExp := (d,h,n,k) -> coeftayl(d*h^k, x=0,n)*n!/k!: %p A131222 A131222 := (n,k) -> RioExp(1,log((1-x)/(1-2*x)),n,k): %p A131222 seq(print(seq(A131222(n,k),k=0..n)),n=0..5); # _Peter Luschny_, Apr 15 2015 %p A131222 # The function BellMatrix is defined in A264428. %p A131222 BellMatrix(n -> `if`(n=0,1,n!*(2^(n+1)-1)), 9); # _Peter Luschny_, Jan 27 2016 %t A131222 BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; %t A131222 rows = 12; %t A131222 M = BellMatrix[If[# == 0, 1, #! (2^(#+1) - 1)]&, rows]; %t A131222 Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 24 2018, after _Peter Luschny_ *) %o A131222 (Maxima) T(n,m):=if n=0 and m=0 then 1 else n!*sum((stirling1(k,m)*2^(n-k)*binomial(n-1,k-1))/k!,k,m,n); /* _Vladimir Kruchinin_, Sep 27 2012 */ %o A131222 (Sage) %o A131222 def Lah(n, k): %o A131222 if n == k: return 1 %o A131222 if k<0 or k>n: return 0 %o A131222 return (k*n*gamma(n)^2)/(gamma(k+1)^2*gamma(n-k+1)) %o A131222 matrix(ZZ, 8, Lah) * matrix(ZZ, 8, stirling_number1) # as a square matrix _Peter Luschny_, Apr 12 2015 %o A131222 # alternatively: %o A131222 (Sage) # uses[bell_matrix from A264428] %o A131222 bell_matrix(lambda n: A029767(n+1), 10) # _Peter Luschny_, Jan 18 2016 %Y A131222 Cf. A000007, A002866, A029767, A079638, A079639, A079640. %K A131222 easy,nonn,tabl %O A131222 0,5 %A A131222 _Paul Barry_, Jun 18 2007