A131244 Row sums of triangle A131243.
1, 3, 6, 14, 30, 67, 146, 322, 705, 1549, 3396, 7453, 16346, 35861, 78659, 172549, 378487, 830234, 1821136, 3994730, 8762543, 19220904, 42161568, 92482585, 202863051, 444985664, 976088107, 2141075804, 4696507779
Offset: 0
Examples
a(4) = 30 = sum of row 4 terms of A131243: (8 + 7 + 10 + 4 + 1).
Links
- Index entries for linear recurrences with constant coefficients, signature (2,2,-3,-1).
Programs
-
Maple
A065941 := proc(n,k) binomial(n-floor((k+1)/2),floor(k/2)) ; end proc: A131243 := proc(n,k) local a,j ; a := 0 ; for j from k to n do a := a+ A065941(n,j)*A065941(j,k) ; end do: a ; end proc: A131244 := proc(n) add(A131243(n,k),k=0..n) ; end proc: seq(A131244(n),n=0..50) ; # R. J. Mathar, Jan 29 2011
-
PARI
Vec((1+x-x^3-2*x^2)/(1-2*x-2*x^2+3*x^3+x^4)+O(x^99)) \\ Charles R Greathouse IV, Jun 12 2015
Formula
G.f. ( 1+x-x^3-2*x^2 ) / ( 1-2*x-2*x^2+3*x^3+x^4 ). - R. J. Mathar, Jan 29 2011
Comments