cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131265 Decimal expansion of the negative of the first derivative of the Gamma Function at 1/2.

This page as a plain text file.
%I A131265 #10 May 26 2017 02:41:07
%S A131265 3,4,8,0,2,3,0,9,0,6,9,1,3,2,6,2,0,2,6,9,3,8,5,9,5,1,9,8,1,4,4,3,4,9,
%T A131265 7,5,0,0,3,2,4,2,9,3,3,4,5,0,3,7,6,0,2,1,5,1,5,4,3
%N A131265 Decimal expansion of the negative of the first derivative of the Gamma Function at 1/2.
%H A131265 G. C. Greubel, <a href="/A131265/b131265.txt">Table of n, a(n) for n = 1..10000</a>
%H A131265 T. Amdeberhan, L. Medina and V. H. Moll, <a href="http://arXiv.org/abs/0705.2379">The integrals in Gradshteyn and Ryzhik. Part 5: Some trigonometric integrals</a>, arXiv:0705.2379 [math.CA], 2007, example 3.1.
%F A131265 Equals A020759 * A002161.
%e A131265 3.4802309069132620269385951981443497500324293345037602151543...
%t A131265 RealDigits[ Sqrt[Pi]*PolyGamma[0, 1/2], 10, 59] // First (* _Jean-François Alcover_, Feb 20 2013 *)
%o A131265 (PARI) print(sqrt(Pi)*(Euler+2*log(2)));
%Y A131265 Cf. A020759, A002161.
%K A131265 cons,easy,nonn
%O A131265 1,1
%A A131265 _R. J. Mathar_, Sep 28 2007