A131326 Row sums of A131325.
1, 3, 4, 9, 13, 24, 37, 63, 100, 165, 265, 432, 697, 1131, 1828, 2961, 4789, 7752, 12541, 20295, 32836, 53133, 85969, 139104, 225073, 364179, 589252, 953433, 1542685, 2496120, 4038805, 6534927, 10573732, 17108661, 27682393, 44791056, 72473449, 117264507
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1,-1).
Programs
-
PARI
Vec((1+2*x-x^2) / ((x-1)*(1+x)*(x^2+x-1)) + O(x^50)) \\ Colin Barker, Jul 12 2017
Formula
G.f. ( 1+2*x-x^2 ) / ( (x-1)*(1+x)*(x^2+x-1) ). - R. J. Mathar, Aug 12 2012
a(n) = 3*Fibonacci(n+1)-2 if n even, a(n) = 3*Fibonacci(n+1) if n odd. - R. J. Mathar, Aug 12 2012
From Colin Barker, Jul 12 2017: (Start)
a(n) = (3*2^(-n-1)*((1 + sqrt(5))^(n+1) - (1 - sqrt(5))^(n+1))) / sqrt(5) - 2 for n even.
a(n) = (3*2^(-n-1)*((1 + sqrt(5))^(n+1) - (1 - sqrt(5))^(n+1))) / sqrt(5) for n odd.
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) for n>3.
(End)