A131328 Row sums of triangle A131327.
1, 4, 5, 12, 17, 32, 49, 84, 133, 220, 353, 576, 929, 1508, 2437, 3948, 6385, 10336, 16721, 27060, 43781, 70844, 114625, 185472, 300097, 485572, 785669, 1271244, 2056913, 3328160, 5385073, 8713236, 14098309, 22811548, 36909857, 59721408, 96631265, 156352676
Offset: 0
Examples
a(3) = 12 = sum of row 3 terms of A131327: (3 + 5 + 3 + 1). a(3) = (9 + 3) since we add terms of A131326: (1, 3, 4, 9, 13,...) to A052952: (0, 1, 1, 3, 4,...), getting (9 + 3 ) = 12.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1,-1).
Programs
-
PARI
Vec((1 + 3*x - x^2) / ((1 - x)*(1 + x)*(1 - x - x^2)) + O(x^50)) \\ Colin Barker, Jul 12 2017
Formula
a(n) = -3*(1+(-1)^n)/2 +4*A000045(n+1). - R. J. Mathar, Aug 13 2012
G.f.: ( 1+3*x-x^2 ) / ( (x-1)*(1+x)*(x^2+x-1) ). - R. J. Mathar, Aug 13 2012
From Colin Barker, Jul 12 2017: (Start)
a(n) = (2^(1-n)*((1+sqrt(5))^(n+1) - (1-sqrt(5))^(n+1))) / sqrt(5) - 3 for n even.
a(n) = (2^(1-n)*((1+sqrt(5))^(n+1) - (1-sqrt(5))^(n+1))) / sqrt(5) for n odd.
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) for n>3.
(End)
Extensions
More terms from Colin Barker, Jul 12 2017
Comments