This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A131400 #8 Sep 08 2022 08:45:31 %S A131400 1,2,1,2,2,1,2,3,3,1,2,3,6,3,1,2,4,7,7,4,1,2,4,11,8,11,4,1,2,5,12,15, %T A131400 15,12,5,1,2,5,17,16,30,16,17,5,1,2,6,18,27,36,36,27,18,6,1,2,6,24,28, %U A131400 63,42,63,28,24,6,1,2,7,25,44,71,84,84,71,44,25,7,1 %N A131400 A046854 + A065941 - I (Identity matrix). %C A131400 Row sums = A001595: (1, 3, 5, 9, 15, 25, 41, 67,...). %H A131400 G. C. Greubel, <a href="/A131400/b131400.txt">Rows n = 0..100 of triangle, flattened</a> %e A131400 First few rows of the triangle are: %e A131400 1; %e A131400 2, 1; %e A131400 2, 2, 1; %e A131400 2, 3, 3, 1; %e A131400 2, 3, 6, 3, 1; %e A131400 2, 4, 7, 7, 4, 1; %e A131400 2, 4, 11, 8, 11, 4, 1; ... %t A131400 With[{B = Binomial}, Table[If[k==n, 1, B[Floor[(n+k)/2], k] + B[n - Floor[(k+1)/2], Floor[k/2]]], {n,0,12}, {k,0,n}]]//Flatten (* _G. C. Greubel_, Jul 13 2019 *) %o A131400 (PARI) b=binomial; T(n,k) = if(k==n, 1, b((n+k)\2, k) + b(n - (k+1)\2, k\2)); %o A131400 for(n=0,12, for(k=0,n, print1(T(n,k), ", ", ))) \\ _G. C. Greubel_, Jul 13 2019 %o A131400 (Magma) B:=Binomial; [k eq n select 1 else B(Floor((n+k)/2), k) + B(n - Floor((k+1)/2), Floor(k/2)): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jul 13 2019 %o A131400 (Sage) %o A131400 def T(n, k): %o A131400 b=binomial; %o A131400 if (k==n): return 1 %o A131400 else: return b(floor((n+k)/2), k) + b(n - floor((k+1)/2), floor(k/2)) %o A131400 [[T(n, k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Jul 13 2019 %o A131400 (GAP) %o A131400 B:=Binomial;; %o A131400 T:= function(n,k) %o A131400 if k=n then return 1; %o A131400 else return B(Int((n+k)/2), k) + B(n - Int((k+1)/2), Int(k/2)); %o A131400 fi; %o A131400 end; %o A131400 Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # _G. C. Greubel_, Jul 13 2019 %Y A131400 Cf. A046854, A065941, A001595. %K A131400 nonn,tabl %O A131400 0,2 %A A131400 _Gary W. Adamson_, Jul 06 2007 %E A131400 More terms added by _G. C. Greubel_, Jul 13 2019