cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131439 Inverse binomial transform of A131438 (assuming zero offset in both sequences).

This page as a plain text file.
%I A131439 #19 Jun 02 2025 00:31:49
%S A131439 1,7,14,18,22,26,30,34,38,42,46,50,54,58,62,66,70,74,78,82,86,90,94,
%T A131439 98,102,106,110,114,118,122,126,130,134,138,142,146,150,154,158,162,
%U A131439 166,170,174,178,182
%N A131439 Inverse binomial transform of A131438 (assuming zero offset in both sequences).
%C A131439 Conjecture: The sequence appears to be (1, 7, ...) followed by 4k + 14; k=0,1,2,...; thus: (1, 7, 14, 18, 22, 26, ...).
%C A131439 Inverse binomial transform of this sequence = (1, 6, 1, -4, 7, -10, 13, -16, 19, -22, ...).
%F A131439 A007318^(-1) * A131438.
%F A131439 a(n) = 2*a(n-1) - a(n-2) for n>4. G.f.: -x*(x+1)*(3*x^2-4*x-1) / (x-1)^2. [_Colin Barker_, Jan 06 2013]
%e A131439 (1, 3, 3, 1) dot (1, 7, 14, 18) = 82 = A131438(4).
%Y A131439 Cf. A131436, A131437, A131438.
%K A131439 nonn
%O A131439 1,2
%A A131439 _Gary W. Adamson_, Jul 11 2007