cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131455 Number of inequivalent properly oriented and labeled planar chord diagrams whose associated planar tree is a path on n + 1 vertices.

This page as a plain text file.
%I A131455 #36 Feb 16 2025 08:33:06
%S A131455 1,2,18,284,7280,273246,14144592,965491288,84027112704,9081387766810,
%T A131455 1193283000239616,187340544144604212,34633340434838499328,
%U A131455 7446726867419368499894,1842612127654047957411840,519870106084045866346942256,165896395346243470375430193152,59450668490817059243377908811698,23773400714993519201980928470155264
%N A131455 Number of inequivalent properly oriented and labeled planar chord diagrams whose associated planar tree is a path on n + 1 vertices.
%C A131455 a(n) = n times the number of "2 up, 2 down" permutations of length 2*n-1 = n*A005981(n-1) for n >= 2.
%C A131455 a(n) ~ (c_1)*n*(2*n - 1)!/(c_2)^(2n), where c_1 is a constant and c_2 = 1.87510... is the smallest positive solution of the equation cos(z)* cosh(z) + 1 = 0.
%H A131455 Alois P. Heinz, <a href="/A131455/b131455.txt">Table of n, a(n) for n = 1..250</a>
%H A131455 Guo-Niu Han, <a href="/A196265/a196265.pdf">Enumeration of Standard Puzzles</a>, 2011. [Cached copy]
%H A131455 Guo-Niu Han, <a href="https://arxiv.org/abs/2006.14070">Enumeration of Standard Puzzles</a>, arXiv:2006.14070 [math.CO], 2020.
%H A131455 B. Shapiro and A. Vainshtein, <a href="http://arXiv.org/abs/math.AG/0209062">Counting real rational functions with all real critical values</a>, arXiv:math/0209062 [math.AG], 2002.
%H A131455 B. Shapiro and A. Vainshtein, <a href="http://www.mathnet.ru/php/archive.phtml?wshow=paper&amp;jrnid=mmj&amp;paperid=103&amp;option_lang=eng">Counting real rational functions with all real critical values</a>, Moscow Math. J., 3 (2003), 647-659.
%H A131455 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GeneralizedHyperbolicFunctions.html">Generalized Hyperbolic Functions</a>.
%F A131455 E.g.f.: Sum_{n >= 1} a(n)*(x^(2*n))/(2*n)! = (x/2)*(f(0,x)*f(1,x) - f(2,x)*f(3,x) + f(3,x))/(f(0,x)^2 - f(1,x)*f(3,x)), where f(j,x) = Sum_{k >= 0} (x^(4*k + j))/(4*k + j)!, j = 0, 1, 2, 3, is the j-th generalized hyperbolic function.
%e A131455 From _Petros Hadjicostas_, Jul 25 2020: (Start)
%e A131455 For n = 2, the a(2)/2 = 1 "2 up, 2 down" permutation of length 2*2 - 1 = 3 is the following:
%e A131455          3
%e A131455         /
%e A131455        2
%e A131455       /
%e A131455      1
%e A131455 For n = 3, the a(3)/3 = 6 "2 up, 2 down" permutations of length 2*3 - 1 = 5 are the following:
%e A131455         5          5          5          5          5          5
%e A131455        / \        / \        / \        / \        / \        / \
%e A131455       3   4      4   3      2   4      3   4      4   3      4   2
%e A131455      /     \    /     \    /     \    /     \    /     \    /     \
%e A131455     1       2  1       2  1       3  2       1  2       1  3       1
%e A131455 (End)
%p A131455 b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(
%p A131455      `if`(t=2, b(o-j, u+j-1, 1), b(u+j-1, o-j, t+1)), j=1..o))
%p A131455     end:
%p A131455 a:= n-> n*b(0, 2*n-1, 0):
%p A131455 seq(a(n), n=1..19);  # _Alois P. Heinz_, Nov 23 2021
%t A131455 b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Sum[If[t == 2,
%t A131455      b[o - j, u + j - 1, 1], b[u + j - 1, o - j, t + 1]], {j, 1, o}]];
%t A131455 a[n_] := n*b[0, 2*n - 1, 0];
%t A131455 Table[a[n], {n, 1, 19}] (* _Jean-François Alcover_, Mar 07 2022, after _Alois P. Heinz_ *)
%o A131455 (PARI) f(j,x,nn) = sum(k=0, 2*nn, (x^(4*k + j))/(4*k + j)!);
%o A131455 g(x,nn) = (x/2)*(f(0,x,nn)*f(1,x,nn) - f(2,x,nn)*f(3,x,nn) + f(3,x,nn))/(f(0,x,nn)^2 - f(1,x,nn)*f(3,x,nn));
%o A131455 lista(nn) = {default(seriesprecision, 2*nn); my(a=vector(nn)); for(n=1, nn, a[n] = (2*n)!*polcoef(Ser(g(x,nn)), 2*n)); a;} \\ _Petros Hadjicostas_, Jul 25 2020
%Y A131455 Cf. A005981, A131453, A131454.
%K A131455 easy,nonn
%O A131455 1,2
%A A131455 _Peter Bala_, Jul 13 2007
%E A131455 More terms from _Petros Hadjicostas_, Jul 25 2020