cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A131459 Residues of 3^(2^(p(n)-1)) for Mersenne numbers with prime indices.

Original entry on oeis.org

0, 4, 28, 124, 601, 8188, 131068, 524284, 5758678, 269332797, 2147483644, 60499757946, 322343434415, 5567835897839, 16557488261208, 7853427629182494, 426047939903614778, 2305843009213693948, 141920345591572240917
Offset: 1

Views

Author

Dennis Martin (dennis.martin(AT)dptechnology.com), Jul 13 2007, Jul 20 2007

Keywords

Comments

Mp is prime iff 3^(2^(p(n)-1)) is congruent to (-3) Mod Mp. Thus M7 = 127 is prime because 3^64 Mod 127 = 124 (=127-3) while M11 = 2047 is composite because 3^1024 Mod 2047 <> 2044.

Examples

			a(5) = 3^(2^(11-1)) Mod 2^11-1 = 3^1024 Mod 2047 = 601
		

Crossrefs

Formula

a(n) = 3^(2^(p(n)-1)) Mod 2^p(n)-1

A131460 Residues of 3^(2^(p(n)-1)+1) for Mersenne numbers with prime indices.

Original entry on oeis.org

0, 5, 22, 118, 1803, 8182, 131062, 524278, 498820, 271127480, 2147483638, 44060320367, 967030303245, 7907414671310, 49672464783624, 5545884378065500, 125222315103997360, 2305843009213693942, 130613131595363896897
Offset: 1

Views

Author

Dennis Martin (dennis.martin(AT)dptechnology.com), Jul 13 2007, Jul 20 2007

Keywords

Comments

Mp is prime iff 3^(2^(p(n)-1)+1) is congruent to (-9) Mod Mp. Thus M7 = 127 is prime because 3^65 Mod 127 = 118 (=127-9) while M11 = 2047 is composite because 3^1025 Mod 2047 <> 2038.

Examples

			a(5) = 3^(2^(11-1)+1) Mod 2^11-1 = 3^1025 Mod 2047 = 1803
		

Crossrefs

Formula

a(n) = 3^(2^(p(n)-1)+1) Mod 2^p(n)-1

A131461 Residues of 3^(2^p(n)-2) for Mersenne numbers with prime indices.

Original entry on oeis.org

0, 1, 1, 1, 1013, 1, 1, 1, 5884965, 65165529, 1, 103888408793, 474639880182, 4112907695371, 72685811469476, 5155089749987738, 440411515280180314, 1, 95591506202441271281, 69291880649932219827
Offset: 1

Views

Author

Dennis Martin (dennis.martin(AT)dptechnology.com), Jul 20 2007

Keywords

Comments

M_p is prime iff 3^(M_p-1) is congruent to 1 mod M_p. Thus M_7 = 127 is prime because 3^126 mod 127 = 1 while M_11 = 2047 is composite because 3^2046 mod 2047 <> 1.

Examples

			a(5) = 3^(2^11-2) mod 2^11-1 = 3^2046 mod 2047 = 1013
		

Crossrefs

Formula

a(n) = 3^(2^p(n)-2) mod 2^p(n)-1

A131462 Residues of 3^(2^p(n)-1) for Mersenne numbers with prime indices.

Original entry on oeis.org

0, 3, 3, 3, 992, 3, 3, 3, 877681, 195496587, 3, 36787319437, 1423919640546, 3542630063906, 77319946053101, 6458069995222223, 168313041233693968, 3, 139200566017647400916, 207875641949796659481
Offset: 1

Views

Author

Dennis Martin (dennis.martin(AT)dptechnology.com), Jul 20 2007

Keywords

Comments

M_p is prime iff 3 ^ M_p is congruent to 3 mod M_p. Thus M_7 = 127 is prime because 3^127 mod 127 = 3 while M_11 = 2047 is composite because 3^2047 mod 2047 <> 3.

Examples

			a(5) = 3^(2^11-1) mod 2^11-1 = 3^2047 mod 2047 = 992
		

Crossrefs

Formula

a(n) = 3^(2^p(n)-1) mod 2^p(n)-1

A131463 Residues of 3^(2^p(n)) for Mersenne numbers with prime indices.

Original entry on oeis.org

0, 2, 9, 9, 929, 9, 9, 9, 2633043, 49618850, 9, 110361958311, 2072735666087, 1831797169511, 91222349803976, 1359811476184687, 504939123701081904, 9, 122453792873589376894, 623626925849389978443
Offset: 1

Views

Author

Dennis Martin (dennis.martin(AT)dptechnology.com), Jul 20 2007

Keywords

Comments

M_p is prime iff 3^(M_p+1) is congruent to 9 mod M_p. Thus M_7 = 127 is prime because 3^128 mod 127 = 9 while M_11 = 2047 is composite because 3^2048 mod 2047 <> 9.

Examples

			a(5) = 3^(2^11) mod 2^11-1 = 3^2048 mod 2047 = 929
		

Crossrefs

Formula

a(n) = 3^(2^p(n)) mod 2^p(n)-1
Showing 1-5 of 5 results.