A131469 Grundy numbers of one pile short global nim.
0, 1, 1, 2, 3, 3, 2, 4, 5, 5, 6, 7, 7, 6, 4, 8, 9, 9, 8, 10, 11, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 14, 18, 19, 16, 17, 18, 20, 10, 19, 20, 21, 21, 22, 23, 23, 24, 25, 25, 24, 26, 27, 27, 28
Offset: 0
Keywords
References
- R. K. Guy and R. J. Nowakowski, Unsolved Problems in Combinatorial Games, More Games of No Chance, MSRI Publications, Volume 42, 2002, pp. 457-473, problem 22.
Links
- Urban Larsson, Simon Rubinstein-Salzedo, Aaron N. Siegel, Memgames, arXiv:1912.10517 [math.CO], 2019.
Programs
-
Maple
mex := proc (list) local testn; testn := 0; while evalb(`in`(testn, list)) do testn := testn+1 end do; testn end proc nextmoves := proc (move) local i, j, k, l, list1, list2, list3, list4, list5, list6; i := move[1]; j := move[2]; k := move[3]; list1 := `minus`({seq([n, j, i-n], n = 0 .. i-1)}, {[i-k, j, k]}); list2 := `minus`({seq([i, n, j-n], n = 0 .. j-1)}, {[i, j-k, k]}); convert(`union`(list1, list2), list) end proc sgnimgrundy := proc (move) local nmoves, i, j, k; option remember; nmoves := nextmoves(move); i := move[1]; j := move[2]; k := move[3]; if i = 0 and j = 0 then 0 elif i = 0 and j = 1 and k = 1 then 0 elif i = 1 and j = 0 and k = 1 then 0 elif i = 1 and j = 1 and k = 1 then 0 else mex({seq(apply(sgnimgrundy, nmoves[i]), i = 1 .. nops(nmoves))}) end if end proc
Comments