cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131490 Appears in Taylor series of powers of generalized Bessel functions.

This page as a plain text file.
%I A131490 #27 Jan 05 2025 19:51:38
%S A131490 1,1,3,16,130,1485,22645,444136,10889676,326345460,11736144420,
%T A131490 498798542880,24732729791484,1415034219327729,92523874454996985,
%U A131490 6856434802243346320,571604206230905727880,53259509403796625217288,5513868420471764306104008
%N A131490 Appears in Taylor series of powers of generalized Bessel functions.
%C A131490 Integer sequence given between equations (16) and (17) of Bender et al., p. 4. A recursion is found for coefficients of Taylor series of r-th powers of generalized Bessel functions.
%C A131490 A001263^(-1) * [1, 2, 3, ...] = A103364 * [1, 2, 3, ...] = (1, 1, -1, 3, -16, 130, -1485, 22645, ...); where A001263 = the Narayana triangle. - _Gary W. Adamson_, Jan 02 2008
%C A131490 Image of n^2 under A001263^(-1), i.e., A001263^(-1) *[0,1,4,9,...] is [0, 1, 1, -3, 16, -130, 1485, -22645, 444136, ...]. - _Paul Barry_, Jul 13 2009
%H A131490 Carl M. Bender, Dorje C. Brody, and Bernhard K. Meister, <a href="http://dx.doi.org/10.1063/1.1526940">On powers of Bessel functions</a>, J. Math. Phys. vol 44, No. 1 (2003) pp 309-314.
%H A131490 Yan Hong, Bai-Ni Guo, and Feng Qi, <a href="https://doi.org/10.32604/cmes.2021.016431">Determinantal Expressions and Recursive Relations for the Bessel Zeta Function and for a Sequence Originating from a Series Expansion of the Power of Modified Bessel Function of the First Kind</a>, Computer Modeling in Engineering and Sciences (2021) Vol. 129, No. 1, 409-423.
%H A131490 F. T. Howard, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/23-3/howard.pdf">Integers Related to the Bessel Function J1(z)</a>, Fibonacci Quarterly, Volume 23, Number 3, August 1985, pp. 249-257.
%F A131490 For n>1, a(n) = (Sum_{r=1..n-1} binomial(n+1,r+1)*binomial(n+1,r)*a(r)*a(n-r))/(n+1)^2. - _Michel Marcus_, Oct 17 2012
%p A131490 A131490 := proc(n) local twos,resul; resul := twos*taylor(BesselI(0,twos),twos=0,2*n+3) ; resul := resul/taylor(BesselI(1,twos),twos=0,2*n+3) ; resul := taylor(resul-4,twos=0,2*n+3) ; resul := coeftayl(resul,twos=0,2*n) ; resul := resul*4^n/2 ; abs(resul*factorial(n+1)*factorial(n)) ; end: seq(A131490(n),n=1..23) ; # _R. J. Mathar_, Jul 31 2007
%Y A131490 Cf. A001263, A103364.
%K A131490 nonn
%O A131490 1,3
%A A131490 _Jonathan Vos Post_, Jul 28 2007
%E A131490 More terms from _R. J. Mathar_, Jul 31 2007