cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131557 Triangular numbers that are the sums of five consecutive triangular numbers.

This page as a plain text file.
%I A131557 #42 Mar 22 2024 18:48:14
%S A131557 55,2485,17020,799480,5479705,257429395,1764447310,82891465030,
%T A131557 568146553435,26690794309585,182941425758080,8594352876220660,
%U A131557 58906570947547645,2767354935348742255,18967732903684582930,891079694829418784770,6107551088415488155135
%N A131557 Triangular numbers that are the sums of five consecutive triangular numbers.
%H A131557 Alois P. Heinz, <a href="/A131557/b131557.txt">Table of n, a(n) for n = 1..250</a>
%H A131557 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,322,-322,-1,1).
%F A131557 The subsequences with odd indices and even indices satisfy the same recurrence relations: a(n+2) = 322*a(n+1) - a(n) - 680 and a(n+1) = 161*a(n) - 340 + 9*sqrt(320*a(n)^2 - 1360*a(n) - 175).
%F A131557 G.f.: -5*x*(11+486*x-635*x^2+2*x^4) / ( (x-1)*(x^2+18*x+1)*(x^2-18*x+1) ).
%F A131557 8*a(n) = 17 + 45*A007805(n) + 18*(-1)^n*A049629(n). - _R. J. Mathar_, Apr 28 2020
%e A131557 a(1) = 55 = 3+6+10+15+21.
%p A131557 a:= n-> `if`(n<2, [0, 55][n+1], (<<0|1|0>, <0|0|1>, <1|-323|323>>^iquo(n-2, 2, 'r'). `if`(r=0, <<2485, 799480, 257429395>>, <<17020, 5479705, 1764447310>>))[1, 1]): seq(a(n), n=1..20); # _Alois P. Heinz_, Sep 25 2008, revised Dec 15 2011
%t A131557 LinearRecurrence[{1, 322, -322, -1, 1}, {55, 2485, 17020, 799480, 5479705}, 20] (* _Jean-François Alcover_, Oct 05 2019 *)
%Y A131557 Cf. A129803.
%K A131557 nonn,easy
%O A131557 1,1
%A A131557 _Richard Choulet_, Oct 06 2007
%E A131557 More terms from _Alois P. Heinz_, Sep 25 2008
%E A131557 a(6) and a(8) corrected by _Harvey P. Dale_, Oct 02 2011
%E A131557 a(10), a(12), a(14) corrected at the suggestion of _Harvey P. Dale_ by _D. S. McNeil_, Oct 02 2011