A131574 Numbers n that are the product of two distinct odd primes and x^2 + y^2 = n has integer solutions.
65, 85, 145, 185, 205, 221, 265, 305, 365, 377, 445, 481, 485, 493, 505, 533, 545, 565, 629, 685, 689, 697, 745, 785, 793, 865, 901, 905, 949, 965, 985, 1037, 1073, 1145, 1157, 1165, 1189, 1205, 1241, 1261, 1285, 1313, 1345, 1385, 1405, 1417, 1465, 1469
Offset: 1
Keywords
Examples
65 is in the sequence because x^2 + y^2 = 65 = 5*13 has solutions (x,y) = (1,8), (4,7), (7,4) and (8,1).
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Colin Barker)
Programs
-
PARI
dop(d, nmax) = { my(L=List(), v=vector(d,m,1)~, f); for(n=1, nmax, f=factorint(n); if(#f~==d && f[1,1]>2 && f[,2]==v && f[,1]%4==v, listput(L, n)) ); Vec(L) } dop(2, 3000) \\ Colin Barker, Nov 15 2015
Comments