cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131638 Increasing binary trees having exactly two vertices with outdegree 1.

This page as a plain text file.
%I A131638 #35 Aug 05 2023 23:39:11
%S A131638 1,11,180,4288,141584,6213288,350400832,24718075136,2133652515072,
%T A131638 221311262045440,27166907582280704,3895974311462313984,
%U A131638 645512064907811491840,122381396964887716078592,26325690425815766552887296,6377608610246241663568248832
%N A131638 Increasing binary trees having exactly two vertices with outdegree 1.
%H A131638 M. P. Develin and S. P. Sullivant, <a href="http://dx.doi.org/10.1007/s00026-003-0196-9">Markov Bases of Binary Graph Models</a>, Annals of Combinatorics 7 (2003) 441-466.
%H A131638 Christiane Poupard, <a href="http://dx.doi.org/10.1016/S0195-6698(89)80009-5">Deux propriétés des arbres binaires ordonnés stricts</a>, Europ. J. Combin., vol. 10, 1989, pp. 369-374.
%F A131638 E.g.f.: (3*sec(x/sqrt(2))^2*tan(x/sqrt(2))^2-x*sec(x/sqrt(2))^2*tan(x/sqrt(2))/(sqrt(2)))/2. - _Michel Marcus_, Mar 03 2013
%F A131638 a(n) ~ (2*n)! * 2^(n+6)*n^3/Pi^(2*n+4). - _Vaclav Kotesovec_, Sep 25 2013
%F A131638 From _Klaus K Haverkamp_, Jul 02 2023: (Start)
%F A131638 a(n) = (A002105(n+2) - (n+1)*A002105(n+1))/2.
%F A131638 a(n) = A094503(2n+1,n). (End)
%t A131638 Table[n!*SeriesCoefficient[1/2*(-((x*Sec[x/Sqrt[2]]^2 *Tan[x/Sqrt[2]]) /Sqrt[2]) + 3*Sec[x/Sqrt[2]]^2 *Tan[x/Sqrt[2]]^2), {x, 0, n}], {n, 2, 40, 2}] (* _Vaclav Kotesovec_ after _Michel Marcus_, Sep 25 2013 *)
%o A131638 (PARI) lista(m) = { default(realprecision, 30); x = y + O(y^m); egf = (3*tan(x/sqrt(2))^2/cos(x/sqrt(2))^2-x*tan(x/sqrt(2))/(sqrt(2)*cos(x/sqrt(2))^2))/2; forstep (n=2, m, 2, print1(round(n!*polcoeff(egf, n, y)), ", "));}  \\ _Michel Marcus_, Mar 03 2013
%Y A131638 Cf. A002105, A094503.
%K A131638 nonn
%O A131638 1,2
%A A131638 _Wenjin Woan_, Oct 03 2007
%E A131638 More terms from _Michel Marcus_, Mar 03 2013