cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131657 For n >= 1, put A_n(z) = Sum_{j>=0} (n*j)!/(j!^n) * z^j and B_n(z) = Sum_{j>=0} (n*j)!/(j!^n) * z^j * (Sum_{k=1..j*n} (1/k)), and let b(n) be the largest integer for which exp(B_n(z)/(b(n)*A_n(z))) has integral coefficients. The sequence is b(n).

Table of values

n a(n)
1 1
2 1
3 1
4 2
5 2
6 36
7 36
8 144
9 144
10 1440
11 1440
12 17280
13 17280
14 241920
15 3628800
16 29030400
17 29030400
18 1567641600
19 1567641600
20 783820800000
21 9876142080000
22 651825377280000
23 217275125760000
24 8691005030400000

List of values

[1, 1, 1, 2, 2, 36, 36, 144, 144, 1440, 1440, 17280, 17280, 241920, 3628800, 29030400, 29030400, 1567641600, 1567641600, 783820800000, 9876142080000, 651825377280000, 217275125760000, 8691005030400000]