cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131658 For n >= 1, put A_n(z) = Sum_{j>=0} (n*j)!/(j!^n) * z^j and B_n(z) = Sum_{j>=0} (n*j)!/(j!^n) * z^j * (Sum__{k=j+1..j*n} (1/k)), and let u(n) be the largest integer for which exp(B_n(z)/(u(n)*A_n(z))) has integral coefficients. The sequence is u(n).

Original entry on oeis.org

1, 1, 1, 2, 2, 36, 36, 144, 144, 1440, 1440, 17280, 17280, 241920, 3628800, 29030400, 29030400, 1567641600, 1567641600, 156764160000, 49380710400000, 217275125760000, 1086375628800000, 1738201006080000
Offset: 1

Views

Author

Christian Krattenthaler (Christian.Krattenthaler(AT)univie.ac.at), Sep 12 2007, Sep 30 2007

Keywords

Comments

Different from A131657 and A056612.

Crossrefs

Cf. A007757 (bisection at even integers), A056612, A131657.

Formula

A formula, conditional on a widely believed conjecture, can be found in the article by Krattenthaler and Rivoal (2007-2009) cited in the references: see Theorem 4 and the accompanying remarks.