cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131693 Numbers n such that S(n) = 0, where S(n) = (S(n-1) + A000040(n+1))*(-1)^n; S(0)=0, n >= 1.

This page as a plain text file.
%I A131693 #6 Feb 28 2020 21:24:59
%S A131693 10,14,18,4290,4392,4434,4440,4456,4480,48596,48620,48744,49540,49544,
%T A131693 49722,55058,55078,55200,56466,56474,60110,60128,60462,60750,61328,
%U A131693 61486,62114,62758,62770,62974,62992,63022,63076,63094,63272,63802
%N A131693 Numbers n such that S(n) = 0, where S(n) = (S(n-1) + A000040(n+1))*(-1)^n; S(0)=0, n >= 1.
%C A131693 Or, with A065091(odd primes), numbers n such that S(n) = 0, where S(n) = (S(n-1) + A065091(n))*(-1)^n; S(0)=0, n >= 1.
%e A131693 S(9) = (..((0+3)*-1)+5)*1)+7)*-1)+11)*1)+13)*-1)+17)*1)+19)*-1)+23)*1)+29)*-1 = -31, S(10)=(-31 + 31)*1 = 0, hence 10 is a term.
%e A131693 S(13) = (..((0+3)*-1)+5)*1)+7)*-1)+11)*1)+13)*-1)+17)*1)+19)*-1)+23)*1)+29)*-1)+31)*1)+37)*-1)+41)*1)+43)*-1 = -47, S(14)=(-47 + 47)*1 = 0, hence 14 is a term.
%t A131693 S=0;a=0; Do[S=(S+Prime[n+1])*(-1)^n; If[S==0,a++; Print[a," ",n]], {n, 1, 10^8, 1}]
%Y A131693 Cf. A131196, A131197, A130642, A130643, A065091, A000040.
%K A131693 nonn
%O A131693 1,1
%A A131693 _Manuel Valdivia_, Oct 03 2007