This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A131699 #13 Feb 22 2019 01:49:33 %S A131699 1,15,322,167,6444,32183,7306,225418,6551032,683405939,7074698775, %T A131699 26331754107,844494314469,11303028458639,251188643150958, %U A131699 93364101391902,16114920282762613,239390020079624346,191165654339590395 %N A131699 Smallest number whose n-th power begins with precisely n identical digits (in base ten). %C A131699 Main diagonal of array A[k,n] = n-th positive integer whose square (base 10) begins with k identical digits. M. F. Hasler points out that numbers whose squares start with 4 identical digits; numbers whose squares start with 5 identical digits; and numbers whose squares start with 6 identical digits; are already in the OEIS (along with A119511, A119998). %C A131699 For the less stringent condition of the n-th power beginning with at least n identical digits, replace the numbers at indices {14,23,27,49,53} with: %C A131699 14 1247955519394 %C A131699 23 2237770493401064693452 %C A131699 27 119060799886319434107761934 %C A131699 49 1389495494373137637129985217353011622113046714491 %C A131699 53 6489094571807720876517179893325894917102663447322282, respectively. %H A131699 Hans Havermann, <a href="/A131699/b131699.txt">Table of n, a(n) for n=1..100</a> %F A131699 a(n) = Min{k>0 such that k^n begins with precisely n identical leftmost digits (base ten)}. %e A131699 a(1) = 1 because 1^1 = 1 begins with precisely 1 identical digit. %e A131699 a(2) = 15 because 15^2 = 225 begins with precisely 2 identical digits. %e A131699 a(3) = 322 because 322^3 = 33386248 begins with precisely 3 identical digits. %e A131699 a(4) = 167 because 167^4 = 777796321 begins with precisely 4 identical digits. %e A131699 a(5) = 6444 because 6444^5 = 11111627111310388224 begins with precisely 5 identical digits. %Y A131699 See A132392 for another version. %Y A131699 Cf. A119511, A119998, A131573. %K A131699 base,nonn %O A131699 1,2 %A A131699 _Jonathan Vos Post_ and _Hans Havermann_, Sep 15 2007 %E A131699 Edited by _N. J. A. Sloane_, Jul 01 2008 at the suggestion of _R. J. Mathar_