This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A131713 #56 Oct 17 2024 20:03:54 %S A131713 1,-2,1,1,-2,1,1,-2,1,1,-2,1,1,-2,1,1,-2,1,1,-2,1,1,-2,1,1,-2,1,1,-2, %T A131713 1,1,-2,1,1,-2,1,1,-2,1,1,-2,1,1,-2,1,1,-2,1,1,-2,1,1,-2,1,1,-2,1,1, %U A131713 -2,1,1,-2,1,1,-2,1,1,-2,1,1,-2,1,1,-2,1,1,-2,1 %N A131713 Period 3: repeat [1, -2, 1]. %C A131713 Second differences of A131534. Binomial transform of 1, -3, 6, -9, 9, 0, ..., A057083 signed. %C A131713 Nonsimple continued fraction expansion of sqrt(2)-1 = 0.414213562... - _R. J. Mathar_, Mar 08 2012 %H A131713 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-1). %F A131713 a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^n) = 0^n, b(3^n) = 3 * 0^n - 2, b(p^n) = 1 if p > 3. - _Michael Somos_, Jan 02 2011 %F A131713 G.f.: (1-x)/(x^2+x+1). - _R. J. Mathar_, Nov 14 2007 %F A131713 a(n) = 2*cos((2n+1)*Pi/3). - _Jaume Oliver Lafont_, Nov 23 2008 %F A131713 a(n) = A117188(2*n). - _R. J. Mathar_, Jun 13 2011 %F A131713 a(n) + a(n-1) + a(n-2) = 0 for n>1, a(n) = a(n-3) for n>2. - _Wesley Ivan Hurt_, Jul 01 2016 %F A131713 a(n) = (1/4^n) * Sum_{k = 0..n} binomial(2*n+1,2*k)*(-3)^k. - _Peter Bala_, Feb 06 2019 %F A131713 E.g.f.: 2*exp(-x/2)*cos(sqrt(3)*x/2 + Pi/3). - _Fabian Pereyra_, Oct 17 2024 %p A131713 seq(op([1, -2, 1]), n=0..50); # _Wesley Ivan Hurt_, Jul 01 2016 %t A131713 f[n_] := If[ Mod[n, 3] == 1, -2, 1]; Array[f, 105, 0] %t A131713 CoefficientList[Series[(1 - x)/(1 + x + x^2), {x, 0, 104}], x] %t A131713 PadRight[{}, 120, {1,-2,1}] (* _Harvey P. Dale_, Jan 25 2014 *) %o A131713 (PARI) a(n)=[1,-2,1][1+n%3] \\ _Jaume Oliver Lafont_, Mar 24 2009 %o A131713 (PARI) a(n)=1-3*(n%3==1) \\ _Jaume Oliver Lafont_, Mar 24 2009 %o A131713 (Magma) &cat [[1, -2, 1]^^30]; // _Wesley Ivan Hurt_, Jul 01 2016 %Y A131713 Cf. A057083, A061347, A131534. %K A131713 sign,easy,less %O A131713 0,2 %A A131713 _Paul Curtz_, Sep 14 2007 %E A131713 Corrected and extended by _Michael Somos_, Jan 02 2011