cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131758 Coefficients of numerators of rational functions whose binomial transforms give the normalized polylogarithms Li(-n,t)/n!.

This page as a plain text file.
%I A131758 #48 May 23 2024 00:32:52
%S A131758 1,0,1,-1,1,2,4,-14,10,6,-15,83,-157,89,24,56,-424,1266,-1724,826,120,
%T A131758 -185,1887,-8038,17642,-19593,8287,720,204,-4976,36226,-126944,239576,
%U A131758 -234688,90602,5040
%N A131758 Coefficients of numerators of rational functions whose binomial transforms give the normalized polylogarithms Li(-n,t)/n!.
%C A131758 Coefficients may be generated from a modified Riordan array (MRA) formed from Rgf(z,t) = (t/(1+z))/(exp(-z/(1+z))-t) with each row of the array acting to generate the succeeding polynomial P(n,t) from the preceding n polynomials.
%C A131758 The MRA is constructed by appending an n! to the left of the n-th row of the Riordan array A129652 and removing the unit diagonal.
%C A131758 The MRA is partially
%C A131758     1;
%C A131758     1,    1;
%C A131758     2,    3,    2;
%C A131758     6,   13,    9,    3;
%C A131758    24,   73,   52,   18,    4;
%C A131758   120,  501,  365,  130,   30,    5;
%C A131758   720, 4051, 3006, 1095,  260,   45,   6;
%C A131758 For the MRA:
%C A131758   1) First column is the n!'s.
%C A131758   2) Second column is A000262.
%C A131758 Then, e.g., from the terms in the MRA,
%C A131758   P(0,t) = 0!*(t-1)^0 = 1 from the n=0 row,
%C A131758   P(1,t) = 1!*(t-1)^1 + 1*P(0,t) = t from the n=1 row,
%C A131758   P(2,t) = 2!*(t-1)^2 + 3*P(0,t)*(t-1)^1 + 2*P(1,t)
%C A131758   P(3,t) = 3!*(t-1)^3 + 13*P(0,t)*(t-1)^2 + 9*P(1,t)*(t-1)^1 + 3*P(2,t)
%C A131758 generating
%C A131758   P(0,t) = (1)
%C A131758   P(1,t) = (0, 1)
%C A131758   P(2,t) = (-1, 1, 2)
%C A131758   P(3,t) = (4, -14, 10, 6) = 4 + -14 t + 10 t^2 + 6 t^3
%C A131758   P(4,t) = (-15, 83, -157, 89, 24)
%C A131758   P(5,t) = (56, -424, 1266, -1724, 826, 120)
%C A131758   P(6,t) = (-185, 1887, -8038, 17642, -19593, 8287, 720)
%C A131758   P(7,t) = (204, -4976, 36226, -126944, 239576, -234688, 90602, 5040)
%C A131758 For the polynomial array:
%C A131758   1) The first column is A009940 = (-1)^n * n!*Lag(n,1) =(-1)^n* n!* Lag(n,-1,-1).
%C A131758   2) Row sums are n!.
%C A131758   3) Highest order coefficient is n!.
%C A131758   4) Alternating row sum is below.
%C A131758 Then, with Rf(n,t) = [ t/(1-t)^(n+1) ] * P(n,t)/n!, the polylogs are given umbrally by
%C A131758   Li(-n,t)/n! = [ 1 + Rf(.,t) ]^n for n = 0,1,2,... so conversely
%C A131758   Rf(n,t) = {[ Li(-(.),t))/(.)! ]-1}^n.
%C A131758 Note umbrally [ Rf(.,t) ]^n = Rf(n,t) and
%C A131758   (1+Rf)^0 = 1^0 * [ Rf(.,t) ]^0 = Rf(0,t) = t/(1-t) = Li(0,t).
%C A131758 More generally, Newton interpolation holds and for Re(s) >= 0,
%C A131758   Li(-s,t)/(s)! = [ 1 + Rf(.,t) ]^s, when convergent in t.
%C A131758 Alternatively, the Rf's may be formed through differentiation of their o.g.f., the Rgf(z,t) above, which may also be written as
%C A131758   Rgf(z,t) = Sum_{k>=1} [ t^k ] * exp[ k * z/(z+1) ]/(z+1)
%C A131758     = Sum_{n>=0} [ (-z)^n ] * Sum_{k>=1} [ (t^k * Lag(n,k) ]
%C A131758     = Sum_{k>=0} [ (-z)^k ] * Lag(k,Li(-(.),t))
%C A131758     = Sum_{k>=0} [ z^k ] * {[ Li(-(.),t))/(.)! ]-1}^k
%C A131758     = exp[ Li(-(.),t)*z/(1+z) ]/(1+z),
%C A131758 and operationally as
%C A131758   Rgf(z,t) = {Sum_{k>=0} (-z)^k * Lag(k,tD)} [ t/(1-t) ]
%C A131758     = {Sum_{k>=0} (-z)^k * Lag(k,T(.,:tD:))} [ t/(1-t) ]
%C A131758     = {Sum_{k>=0} (-z)^k * Sum_{j>=0} Lag(k,j) (tD)^j /j!} [ x/(1-x) ]
%C A131758 where D is w.r.t. x at 0
%C A131758     = {Sum_{k>=0} (-z)^k*Sum_{j=0..k} (-1)^j*[ 1-Lag(k,.) ]^j*(:tD:)^j/ j!} [ t/(1-t) ]
%C A131758     = {Sum_{k>=0} (-z)^k * exp[ -[ 1-Lag(k,.) ]* :tD: ]} [ t/(1-t) ]
%C A131758 where (:tD:)^n = t^n * D^n, D is the derivative w.r.t. t unless otherwise stated, Lag(n,x) is a Laguerre polynomial and T(n,t) is a Touchard / Bell / exponential polynomial.
%C A131758 Hence [ t/(1-t)^(n+1) ] * P(n,t)/n! = Rf(n,t)
%C A131758   = {Sum_{k=0..n} (-1)^n-k)*[ C(m,k)/k! ]*(tD)^k} [ t/(1-t) ]
%C A131758   = {Sum_{k=0..n} (-1)^(n-k)*[ C(m,k)/k! ]*Sum_{j=0..k} S2(k,j)*(:tD:)^j} [ t/(1-t) ]
%C A131758   = {Sum_{k>=0} (-1)^(n-k) * Lag(n,k) * (tD)^k/k!} [ x/(1-x) ] where D is w.r.t. x at 0
%C A131758   = {Sum_{k=0..n} (-1)^(n-k)* [ 1-Lag(n,.) ]^k *(:tD:)^k/k!}[ t/(1-t) ],
%C A131758 where S2(k,j) are the Stirling numbers of the second kind and C(m,k), binomial coefficients.
%C A131758 The P(n,t) are related to the Laguerre polynomials through
%C A131758   P(n,t) = (-1)^n n! [ (1-t)^(n+1)} ] Sum_{k>=0} [ (t^k*Lag(n,k+1) ] = Sum_{m=0..n} a(n,m) * t^m
%C A131758 where a(n,m) = (-1)^n n! [ Sum_{k=0..m} (-1)^k * C(n+1,k) *Lag(n,m-k+1) ] .
%C A131758 Conjecture for the polynomial array:
%C A131758 The greatest common divisor of the coefficients of each polynomial is given by A060872(n)/n or, equivalently, by A038548(n).
%C A131758 Some e.g.f.'s for the Rf's are
%C A131758   exp[ -Rf(.,t)*z ] = exp{[ 1-Li(-(.),t)/(.)! ]*z}
%C A131758     = Sum_{n>=0} { (z^n/n!) * Sum_{k>=1} [ t^k * Lag(n,k) ] }
%C A131758     = Sum_{k>=1} { t^k * (e^z) * J_0[ 2*sqrt(k*z)}
%C A131758     = Sum_{n>=0} {(-1)^n*(z^n/n!)*(z^/j!)*Lag(n,-1)*Sum_{k>=1} [ t^k*k^n*(k+1)^j ]}
%C A131758 where J_0(x) is the zeroth Bessel function of the first kind.
%C A131758 The expressions (:tD:)^j}[ t/(1-t) ] and the Laguerre polynomials are intimately connected to Lah numbers and rook polynomials.
%C A131758 Some interesting relations to physics, probability and number theory are, for abs(t) < 1 and abs(z) < 1 at least,
%C A131758 BE(t,z) = Sum_{k>=0} [ (-z)^k ] *[ 1 + Rf(.,t) ]^k
%C A131758   = Rgf(-z/(1+z),t)/(1+z) = t/{exp(z)-t}, a Bose-Einstein distribution,
%C A131758 FD(t,z) = Sum_{k>=0} [ (-z)^k+1 ] *[ 1 + Rf(.,-t) ]^k
%C A131758   = -Rgf(-z/(1+z),-t)/(1+z) = t/{exp(z)+t}, a Fermi-Dirac distribution
%C A131758 and as t tends to 1 from below, z*BE(t,z) tends to the Bernoulli e.g.f., which is related by the Mellin transform to (s-1)!*Zeta(s). Taking Mellin transforms of BE and FD w.r.t. z gives the polylogarithm over different domains.
%C A131758 Since BE(2,z) is essentially the e.g.f. for the ordered Bell numbers, it follows that umbrally
%C A131758   n! * Lag(n,OB(.)) = P(n,2) and
%C A131758   n! * Lag(n,P(.,2)) = OB(n)
%C A131758 where OB(n) are the signed ordered Bell/Fubini numbers A000670.
%C A131758 I.e., P(n,2) and the ordered Bell numbers form a reciprocal Laguerre combinatorial transform pair,
%C A131758 or, equivalently, P(n,2)/n! and OB(n)/n! form a reciprocal finite difference pair, so
%C A131758   P(n,2)/n! = (-1)^(n+1) * Rf(n,2) = -{1-[ Li(-(.),2))/(.)! ]}^n and
%C A131758   OB(n) = -Li(-n,2).
%C A131758 Note that n!*Lag(n,(.)!*Lag(.,x)) = x^n is a true identity for general Laguerre polynomials Lag(n,x,a) with a = -1,0,1,..., so one could look at analogous higher-order reciprocal pairs containing OB(n).
%C A131758 In addition, a mixed-order iterated Laguerre transform gives
%C A131758   n!*Lag{n,(.)!*Lag[ .,P(.,2),0 ],-1}
%C A131758     = P(n,2) - n*P(n-1,2)
%C A131758     = n!*Lag[ n,OB(.),-1 ] = A084358(n), lists of sets of lists.
%C A131758 For Eulerian polynomials, E(n,t), given by A173018 (A008292),
%C A131758   E(n,t)/n! = [ 1-t+P(.,t)/(.)! ]^n
%C A131758   P(n,t)/n! = [ E(.,t)/(.)!-(1-t) ]^n, or equivalently
%C A131758   [ E(.,t)/(1-t) ]^n = n!*Lag[ n,-P(.,t)/(1-t) ]
%C A131758   [ -P(.,t)/(1-t) ]^n = n!*Lag[ n,E(.,t)/(1-t) ], a Laguerre transform pair.
%C A131758 Then from known relations for the Eulerian polynomials, the alternating row sum of the polynomial array is
%C A131758   P(n,-1) = (-2)^(n+1) * n! * Lag[ n,c(.)*Zeta(-(.)) ]
%C A131758 where c(n) = [ 2^(n+1) - 1 ] and Zeta is the Riemann zeta function. And so
%C A131758   Zeta(-n) = n! * Lag[ n,-P(.,-1)/2 ] / [ 2 - 2^(n+2) ],
%C A131758 which also holds, with the summation limit of Lag extended to infinity, for n = s, any complex number with Re(s) > 0.
%C A131758 Then from standard formulas for the signed Euler numbers EN(n), the Bernoulli numbers Ber(n), the Genocchi numbers GN(n), the Euler polynomials EP(n,t), the Eulerian polynomials E(n,t), the Touchard / Bell polynomials T(n,t) and the binomial C(x,y) = x!/[ (x-y)!*y! ]
%C A131758 2^(n+1) * (1-2^(n+1)) * (-1)^n * Zeta(-n)
%C A131758   = 2^(n+1) * (1-2^(n+1)) * Ber(n+1)/(n+1)
%C A131758   = [ -(1+EN(.)) ]^n
%C A131758   = 2^n * GN(n+1)/(n+1)
%C A131758   = 2^n * EP(n,0)
%C A131758   = (-1)^n * E(n,-1)
%C A131758   = (-2)^n * n! * Lag[ n,-P(.,-1)/2 ]
%C A131758   = (-2)^n * n! * C{T[ .,P(.,-1)/2 ] + n, n}
%C A131758   = an integer = Q(n)
%C A131758 These are related to the zag numbers A000182 by Zag(n) = abs[ Q(2*n-1) ]. And, abs[ Q(2*n-1) ] / 2^q(n) = Zag(n) / 2^q(n) = A002425(n) with q(n) = A101921.
%C A131758 These may be generalized by letting n = s, a complex number, (or interpolating) to obtain generalized Laguerre functions or confluent hypergeometric functions of the first kind, M(a,b,x), or second kind, U(a,b,x), whose arguments are P(.,-1)/2, such as
%C A131758 E(s,-1)/[ 2^s*s! ] = -2*Li(-s,-1)/s! = (2-2^(s+2)) * Zeta(-s)/s!
%C A131758   = C{T[ .,P(.,-1)/2 ] + s, s} = Lag[ s,-P(.,-1)/2 ] = M[ -s,1,-P(.,-1)/2 ] or,
%C A131758 GN(s+1)/(s+1)! = EP(s,0)/s! = C{-T[ .,P(.,-1)/2 ]-1, n} = U[ -s,1,-P(.,-1)/2 ]/(s)!
%C A131758 And even more generally
%C A131758   E(s,t)/(1-t)^s = [ (1-t)/t ] Li(-s,t) = s!*Lag[ s,-P(.,t)/(1-t) ]
%C A131758   = s! * C{T[ .,P(.,t)/(1-t) ] + s, s} = s! * M[ -s,1,-P(.,t)/(1-t) ] .
%C A131758 The Laguerre polynomial expressions are fundamental as they can be interpolated to form general M[ a,b,-P(.,t)/(1-t) ] or U[ a,b,-P(.,t)/(1-t) ] which can then be related either directly or by binomial transforms to many important Sheffer sequences, not to mention group theory and Riemann surfaces.
%C A131758 Note for frequently occurring expressions above: The Laguerre polynomials of order -1 and 0 are intimately connected to Lah numbers and rook polynomials and (tD)^n [t/(1-t)] = T(n,:tD:) [t/(1-t)] generates an Eulerian polynomial in the numerator of a rational function. - _Tom Copeland_, Sep 09 2008
%C A131758 The deformed Todd operator on p. 12 of Gunnells and Villegas is Td(a,D) = -D / (a*exp(-D) - 1) = [-D/(1-D)] * Rgf(D/(1-D), 1/a) = -D * BE(1/a,-D) = D * FD(-1/a,-D), where BE and FD are the Bose-Einstein and Fermi-Dirac distributions given above. See also connections among the Eulerian polynomials, Ehrhart polynomials, and the Todd operator in Beck and Robins, especially pages 31 and 37. - _Tom Copeland_, Jun 20 2017
%D A131758 M. Beck and S. Robins, Computing the Continuous Discretely, illustrated by D. Austin, Springer, 2007.
%H A131758 G. C. Greubel, <a href="/A131758/b131758.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%H A131758 P. Gunnells and F. Villegas <a href="https://arxiv.org/abs/math/0405573">Lattice polytopes, Hecke operators, and the Ehrhart polynomial</a>, arXiv:math/0405573 [math.CO], 2004.
%F A131758 a(n,m) = (-1)^n*n!*Sum_{k=0..m} (-1)^k*C(n+1,k)*Lag(n, m-k+1).
%t A131758 a[n_, m_] := (-1)^n *n!*Sum[(-1)^k*Binomial[n+1, k]*LaguerreL[n, m-k+1], {k, 0, m}]; Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* _Jean-François Alcover_, Apr 23 2014 *)
%Y A131758 Cf. A133289, A131202.
%K A131758 sign,tabl,more
%O A131758 0,6
%A A131758 _Tom Copeland_, Sep 17 2007, Sep 27 2007, Sep 30 2007, Oct 01 2007, Oct 08 2007
%E A131758 A173018 given as reference for Eulerian polynomials and typo in a Laguerre function corrected by _Tom Copeland_, Oct 02 2014