This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A131820 #34 Mar 02 2025 22:56:11 %S A131820 1,6,16,33,59,96,146,211,293,394,516,661,831,1028,1254,1511,1801,2126, %T A131820 2488,2889,3331,3816,4346,4923,5549,6226,6956,7741,8583,9484,10446, %U A131820 11471,12561,13718,14944,16241,17611,19056,20578,22179,23861,25626 %N A131820 Row sums of triangle A131819. %C A131820 Let M(n) be the n-th square matrix whose (i,j)-entry equals i^2/(i^2+1) if i=j and equals 1 otherwise. Then a(n) = (-1)^(n+1) * gamma(1-i+n) * gamma(1+i+n) * sinh(Pi)/Pi times the determinant of M(n). - _John M. Campbell_, Sep 07 2011 %F A131820 Binomial transform of (1, 5, 5, 2, 0, 0, 0, ...). %F A131820 From _Alois P. Heinz_, May 04 2009: (Start) %F A131820 a(n) = n^3/3 + n^2/2 + (7/6)*n - 1. %F A131820 a(n) = -1 + Sum_{k=1..n} (k^2+1). %F A131820 a(n) = A000330(n) + A000027(n) - A000012(n). %F A131820 G.f.: x*(1 + 2*x - 2*x^2 + x^3)/(1 - x)^4. (End) %F A131820 a(n) = n^2 + a(n-1) + 1, n > 1. - _Gary Detlefs_, Jun 29 2010 %F A131820 From _Gary Detlefs_, Jun 30 2010: (Start) %F A131820 a(n) = (2n^3 + 3n^2 + 7n - 6)/6, n > 0. %F A131820 a(n) = A081489(n) + A005563(n-1), n > 0. (End) %F A131820 E.g.f.: 1 + exp(x)*(2*x^3 + 9*x^2 + 12*x - 6)/6. - _Stefano Spezia_, Mar 02 2025 %e A131820 a(4) = 33 = (1, 3, 3, 1) dot (1, 5, 5, 2) = (1 + 15 + 15 + 2). %e A131820 a(4) = 33 = sum of row 4 terms of triangle A131819: (13 + 9 + 7 + 4). %p A131820 a:= n-> (7+(3+2*n)*n)*n/6-1: %p A131820 seq(a(n), n=1..40); # _Alois P. Heinz_, May 04 2009 %t A131820 Table[n^3/3 + n^2/2 + 7*n/6 - 1, {n, 100}] %Y A131820 Cf. A131819, A000330, A081489, A005563. %K A131820 nonn,easy %O A131820 1,2 %A A131820 _Gary W. Adamson_, Jul 18 2007 %E A131820 More terms from _Alois P. Heinz_, May 04 2009