This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A131822 #13 Feb 20 2019 05:34:16 %S A131822 1,3,9,15,27,45,105,81,135,225,315,1155,243,405,675,945,1575,3465, %T A131822 15015,729,1215,2025,2835,3375,4725,10395,11025,17325,45045,255255, %U A131822 2187,3645,6075,8505,10125,14175,31185,23625,33075,51975,135135,121275,225225 %N A131822 Increment each prime factor for each term of the least prime signature sequence derived from A080577. %F A131822 a(n) = A003961(A036035(n-1)). - _R. J. Mathar_, Nov 11 2007 %e A131822 The term 30 = 2*3*5 becomes 105 = 3*5*7. %e A131822 From A080577 we obtain %e A131822 1 %e A131822 2 %e A131822 4, 6 %e A131822 8, 12, 30 %e A131822 16, 24, 36, 60, ... %e A131822 etc. %e A131822 so the sequence begins %e A131822 1 %e A131822 3 %e A131822 9, 15 %e A131822 27, 45, 105 %e A131822 81, 135, 225, 315, ... %e A131822 etc. %p A131822 A003961 := proc(n) local ifs,i ; ifs := ifactors(n)[2] ; mul(nextprime(op(1,i))^op(2,i), i=ifs) ; end: A036042 := proc(n) local a, nredu ; a := 0 ; nredu := n+1 ; while nredu > 0 do nredu := nredu-combinat[numbpart](a) ; a := a+1 ; od: RETURN(a-1) ; end: A036035 := proc(n) local row,idx,pa,a,i ; if n = 0 then 1 ; else row := A036042(n) ; idx := n-add(combinat[numbpart](i),i=0..row-1) ; pa := op(-idx-1,combinat[partition](row)) ; a := 1; for i from 1 to nops(pa) do a := a*ithprime(i)^op(-i,pa) ; od; RETURN(a) ; fi ; end: A131822 := proc(n) A003961(A036035(n-1)) ; end: seq(A131822(n),n=1..80) ; # _R. J. Mathar_, Nov 11 2007 %Y A131822 Cf. A080577, A131801. %K A131822 tabf,easy,nonn %O A131822 1,2 %A A131822 _Alford Arnold_, Jul 19 2007 %E A131822 Corrected and extended by _R. J. Mathar_, Nov 11 2007