This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A131838 #15 Mar 01 2025 11:17:06 %S A131838 0,0,1,2,3,3,2,1,1,1,2,2,1,2,2,1,5,2,2,1,1,8,3,1,1,1,2,2,2,2,1,2,2,2, %T A131838 1,1,1,1,1,1,1,2,2,1,2,2,1,1,2,2,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1, %U A131838 1,1,1,1,1,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A131838 Multiplicative persistence of Woodall numbers. %C A131838 After the 111th term, all the numbers have some digits equal to zero, thus the persistence is equal to 1. %F A131838 a(n) = A031346(A003261(n)). - _Michel Marcus_, Mar 01 2025 %e A131838 Woodall number 159 --> 1*5*9=45 --> 4*5=20 --> 2*0=0 thus persistence is 3. %p A131838 P:=proc(n) local i,k,w,ok,cont; for i from 1 by 1 to n do w:=1; k:=i*2^i-1; ok:=1; if k<10 then print(0); else cont:=1; while ok=1 do while k>0 do w:=w*(k-(trunc(k/10)*10)); k:=trunc(k/10); od; if w<10 then ok:=0; print(cont); else cont:=cont+1; k:=w; w:=1; fi; od; fi; od; end: P(120); %t A131838 Table[wn=n*2^n-1;Length[NestWhileList[Times@@IntegerDigits[#]&, wn, #>=10&]], {n, 105}]-1 (* _James C. McMahon_, Mar 01 2025 *) %Y A131838 Cf. A003261, A031346, A131841. %K A131838 easy,nonn,base %O A131838 1,4 %A A131838 _Paolo P. Lava_ and _Giorgio Balzarotti_, Jul 20 2007