This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A131898 #35 Mar 08 2025 17:16:32 %S A131898 1,5,11,21,39,73,139,269,527,1041,2067,4117,8215,16409,32795,65565, %T A131898 131103,262177,524323,1048613,2097191,4194345,8388651,16777261, %U A131898 33554479,67108913,134217779,268435509,536870967,1073741881,2147483707,4294967357,8589934655,17179869249 %N A131898 a(n) = 2^(n+1) + 2*n - 1. %C A131898 Row sums of triangle A131897. %C A131898 Binomial transform of (1, 4, 2, 2, 2, ...). %C A131898 a(n), n > 0, is the number of maximal subsemigroups of the Motzkin monoid of degree n + 1. - _James Mitchell_ and _Wilf A. Wilson_, Jul 21 2017 %H A131898 Vincenzo Librandi, <a href="/A131898/b131898.txt">Table of n, a(n) for n = 0..1000</a> %H A131898 James East, Jitender Kumar, James D. Mitchell, and Wilf A. Wilson, <a href="https://arxiv.org/abs/1706.04967">Maximal subsemigroups of finite transformation and partition monoids</a>, arXiv:1706.04967 [math.GR], 2017. [From _James Mitchell_ and _Wilf A. Wilson_, Jul 21 2017] %H A131898 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,-5,2). %F A131898 G.f.: (-1-x+4*x^2)/((2*x-1)*(x-1)^2). - _R. J. Mathar_, Jul 03 2011 %F A131898 a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3). - _Vincenzo Librandi_, Jul 05 2012 %F A131898 E.g.f.: exp(x)*(2*(exp(x) + x) - 1). - _Elmo R. Oliveira_, Mar 08 2025 %e A131898 a(3) = 21 = sum of row 3 terms of triangle A131897: (11 + 4 + 2 + 4). %e A131898 a(3) = 21 = (1, 3, 3, 1) dot (1, 4, 2, 2) = (1 + 12 + 6 + 2). %t A131898 CoefficientList[Series[(-1-x+4*x^2)/((2*x-1)*(x-1)^2),{x,0,40}],x] (* _Vincenzo Librandi_, Jul 05 2012 *) %o A131898 (Magma) I:=[1, 5, 11]; [n le 3 select I[n] else 4*Self(n-1)-5*Self(n-2)+2*Self(n-3): n in [1..40]]; // _Vincenzo Librandi_, Jul 05 2012 %Y A131898 Cf. A131897. %K A131898 nonn,easy %O A131898 0,2 %A A131898 _Gary W. Adamson_, Jul 25 2007 %E A131898 New definition by _R. J. Mathar_, Jul 03 2011