A131913 Product of the square matrix in A065941 and the column vector (1, 2, 3, ...)'.
1, 3, 6, 13, 25, 48, 89, 163, 294, 525, 929, 1632, 2849, 4947, 8550, 14717, 25241, 43152, 73561, 125075, 212166, 359133, 606721, 1023168, 1722625, 2895843, 4861254, 8149933, 13646809, 22825200, 38136089, 63653827, 106146534, 176849517, 294401825, 489706272
Offset: 0
Examples
a(4) = 25 = (1, 1, 3, 2, 1) dot (1, 2, 3, 4, 5) = (1 + 2 + 9 + 8 + 5), where (1, 1, 3, 2, 1) = row 4 of triangle A065941. a(4) = 25 = A010049(4) + A001629(6) = 5 + 20. a(5) = 48 = A055244(6) + A001629(4) = 43 + 5.
Links
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
Formula
From Philippe Deléham, Dec 28 2013: (Start)
G.f.: (1+x-x^2)/(1-x-x^2)^2.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4), a(0)=1, a(1)=3, a(2)=6, a(3)=13.
a(n) = a(n-1) + a(n-2) + 2*Fibonacci(n). (End)