This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A131914 #17 Mar 05 2022 03:55:51 %S A131914 1,4,2,7,5,3,10,8,6,4,13,11,9,7,5,16,14,12,10,8,6,19,17,15,13,11,9,7, %T A131914 22,20,18,16,14,12,10,8,25,23,21,19,17,15,13,11,9,28,26,24,22,20,18, %U A131914 16,14,12,10 %N A131914 3*A002024 - 2*A051340. %C A131914 Row sums = the hexagonal numbers, A000384: (1, 6, 15, 28, 45, ...). %C A131914 From _Boris Putievskiy_, Jan 24 2013: (Start) %C A131914 Table T(n,k) = n + 3*k - 3, n, k > 0, read by antidiagonals. General case A209304. Let m be a positive integer. The first column of the table T(n,1) is the sequence of the positive integers A000027. Every subsequent column is formed from the previous column, shifted by m elements. %C A131914 For m=0 the result is A002260, %C A131914 for m=1 the result is A002024, %C A131914 for m=2 the result is A128076, %C A131914 for m=3 the result is A131914, %C A131914 for m=4 the result is A209304. (End) %H A131914 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [Of] Integer Sequences And Pairing Functions</a>, arXiv preprint arXiv:1212.2732 [math.CO], 2012. %F A131914 3*A002024 - 2*A051340 as infinite lower triangular matrices. %F A131914 From _Boris Putievskiy_, Jan 24 2013: (Start) %F A131914 For the general case %F A131914 a(n) = m*A003056 - (m-1)*A002260. %F A131914 a(n) = m*(t+1) + (m-1)*(t*(t+1)/2-n), where t = floor((-1+sqrt(8*n-7))/2). %F A131914 For m = 3, %F A131914 a(n) = 3*A003056 - 2*A002260. %F A131914 a(n) = 3*(t+1) + 2*(t*(t+1)/2-n), where t = floor((-1+sqrt(8*n-7))/2). (End) %e A131914 First few rows of the triangle: %e A131914 1; %e A131914 4, 2; %e A131914 7, 5, 3; %e A131914 10, 8, 6, 4; %e A131914 13, 11, 9, 7, 5; %e A131914 16, 14, 12, 10, 8, 6; %e A131914 19, 17, 15, 13, 11, 9, 7; %e A131914 ... %Y A131914 Cf. A002024, A051340, A000384, A003056, A002260, A002024, A128076, A209304. %K A131914 nonn,tabl %O A131914 1,2 %A A131914 _Gary W. Adamson_, Jul 27 2007