This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A131932 #25 Oct 22 2024 07:59:45 %S A131932 1,3,1,1,8,1,3,6,1,26,2,2,5,2,8,23,1,6,1,107,6,1,14,1,1,1,19,2,8,28,1, %T A131932 93,2,4,5,5,22,1,10,1,1,588,2,20,5,1,64,4,1,5,2,5,81,1,1,18,1,25,112, %U A131932 2,5,1,1 %N A131932 Number of nonisomorphic nonsolvable groups of order A056866(n). %H A131932 O. L. Hoelder, <a href="http://resolver.sub.uni-goettingen.de/purl?GDZPPN002255529">Bildung zusammengesetzter Gruppen</a>, Math. Ann., 46 (1895), 321-422; see p. 420. %e A131932 a(1) = 1 because there is only 1 nonsolvable group of order 60: A_5 (alternating group of 5th degree). %e A131932 a(2) = 3 because there are 3 different nonsolvable groups of order 120. %o A131932 (GAP) NrUnsolvable := function(n) local i, count; count := 0; for i in [1..NumberSmallGroups(n)] do if not IsSolvableGroup(SmallGroup(n, i)) then count := count + 1; fi; od; return count; end; # _Eric M. Schmidt_, Apr 04 2013 %o A131932 (GAP) LoadPackage("GrpConst"); NrUnsolvable := function(n) local i, j, num; num := 0; for i in DivisorsInt(n) do if i<>1 then for j in [1..NrPerfectGroups(i)] do num := num + Length(Remove(UpwardsExtensions(PerfectGroup(IsPermGroup, i, j), n/i))); od; fi; od; return num; end; # _Eric M. Schmidt_, Nov 14 2013 %Y A131932 Cf. A001034, A060793, A056866, A056868. %K A131932 nonn %O A131932 1,2 %A A131932 _Artur Jasinski_, Jul 30 2007, Oct 20 2007 %E A131932 Edited by _N. J. A. Sloane_, Oct 08 2007 %E A131932 More terms from _Eric M. Schmidt_, Apr 04 2013 %E A131932 a(44)-a(63) from _Eric M. Schmidt_, Nov 14 2013