This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A131935 #10 Jan 14 2018 00:12:47 %S A131935 4,7,15,31,65,136,285,597,1251,2621,5492,11507,24111,50519,105853 %N A131935 a(n) is the number of Khalimsky-continuous functions with four-point codomain and an n-point range. %H A131935 Shiva Samieinia, <a href="http://www.math.su.se/reports/2007/6/">Digital straight line segments and curves</a>. Licentiate Thesis. Stockholm University, Department of Mathematics, Report 2007:6. %F A131935 Let c^i(n) be the number of Khalimsky-continuous functions f from [0,n-1]_Z to [0,3]_Z such that f(n-1)=i for i=0,1,2,3 and let a(n) be their sum. Then a(n) = a(n-1)+2a(n-2)+c^1(n-3)+c^2(n-3) %F A131935 The sequence is determined by the above recurrence together with the following recurrences: %F A131935 c^0(2k + 1) = c^0(2k) + c^1(2k), %F A131935 c^1(2k + 1) = c^1(2k), %F A131935 c^2(2k + 1) = c^1(2k) + c^2(2k) + c^3(2k), %F A131935 c^3(2k + 1) = c^3(2k) and %F A131935 c^0(2k) = c^0(2k - 1), %F A131935 c^1(2k) = c^0(2k - 1) + c^1(2k - 1) + c^2(2k - 1), %F A131935 c^2(2k) = c^2(2k - 1), %F A131935 c^3(2k) = c^2(2k - 1) + c^3(2k - 1). %F A131935 For the asymptotic behavior, (c^1(n)+c^2(n))/(c^1(n-1)+c^2(n-1)), (c^0(n)+c^3(n))/(c^0(n-1)+c^3(n-1)) ans a(n)/a(n-1) all tend to 1/2( sqrt(7+ sqrt(5)+ sqrt(38+14 sqrt(5)))) =~ 2.095293985. %F A131935 Conjectures from _Colin Barker_, Jan 13 2018: (Start) %F A131935 G.f.: x*(4 + 3*x - 4*x^2 - x^3) / (1 - x - 3*x^2 + x^3 + x^4). %F A131935 a(n) = a(n-1) + 3*a(n-2) - a(n-3) - a(n-4) for n>4. %F A131935 (End) [Since we have an explicit set of recurrences that produce a(n), it should be straightforward to prove these conjectures. - _N. J. A. Sloane_, Jan 14 2018] %Y A131935 Cf. A131887. %K A131935 nonn,more %O A131935 1,1 %A A131935 Shiva Samieinia (shiva(AT)math.su.se), Oct 05 2007, Oct 09 2007 %E A131935 a(11)-a(15) from _Neo Scott_, Jan 12 2018