This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A131967 #8 Nov 30 2016 23:48:33 %S A131967 1,2,1,3,2,1,4,3,5,2,1,6,4,3,5,7,2,1,8,6,4,9,3,10,5,7,11,2,1,12,8,6,4, %T A131967 9,3,10,5,7,11,13,2,1,14,12,8,6,15,4,9,16,3,17,10,5,18,7,11,13,19,2,1, %U A131967 20,14,12,8,6,15,4,21,9,16,3,17,10,22,5,18,7,11,13,19,23,2 %N A131967 Farey fractal sequence. %C A131967 As a fractal sequence, A131967 properly contains itself as a subsequence (infinitely many times). %C A131967 Step 1: List the Farey fractions by order, like this: %C A131967 order 1: 0/1 1/1 %C A131967 order 2: 0/1 1/2 1/1 %C A131967 order 3: 0/1 1/3 1/2 2/3 1/1, etc. %C A131967 Step 2: Replace each a/b by its position when all the segments in Step 1 are concatenated and each distinct predecessor of a/b is counted just once, getting %C A131967 1 2 %C A131967 1 3 2 %C A131967 1 4 3 5 2, etc. %C A131967 Step 3: Concatenate the segments found in Step 2. %D A131967 C. Kimberling, "Fractal sequences and interspersions," Ars Combinatoria 45 (1997) 157-168. %e A131967 The Farey fractions of order 4 are %e A131967 0 1/4 1/3 1/2 2/3 3/4 1, having position numbers %e A131967 1 6 4 3 5 7 2, which is the fourth segment in the formation of A131967. %t A131967 Farey[n_] := %t A131967 Select[Union@ %t A131967 Flatten@Outer[Divide, Range[n + 1] - 1, Range[n]] , # <= 1 &]; %t A131967 newpos[n_] := %t A131967 Module[{length = Total@Array[EulerPhi, n] + 1, f1 = Farey[n], %t A131967 f2 = Farey[n - 1], to}, %t A131967 to = Complement[Range[length], Flatten[Position[f1, #] & /@ f2]]; %t A131967 ReplacePart[Array[0 &, length], %t A131967 Inner[Rule, to, Range[length - Length[to] + 1, length], List]]]; %t A131967 a[n_] := Flatten@ %t A131967 Table[Fold[ %t A131967 ReplacePart[Array[newpos, i][[#2 + 1]], %t A131967 Inner[Rule, %t A131967 Flatten@Position[Array[newpos, i][[#2 + 1]], 0], #1, List]] &, %t A131967 Array[newpos, i][[1]], Range[i - 1]], {i, n}]; %t A131967 a[10] (* _Birkas Gyorgy_, Feb 21 2011 *) %Y A131967 Cf. A131968. %K A131967 nonn %O A131967 1,2 %A A131967 _Clark Kimberling_, Aug 02 2007