cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132013 T(n,j) for an iterated mixed order Laguerre transform. Coefficients of the normalized generalized Laguerre polynomials (-1)^n*n!*L(n,1-n,x).

This page as a plain text file.
%I A132013 #72 Jul 27 2021 21:21:35
%S A132013 1,-1,1,0,-2,1,0,0,-3,1,0,0,0,-4,1,0,0,0,0,-5,1,0,0,0,0,0,-6,1,0,0,0,
%T A132013 0,0,0,-7,1,0,0,0,0,0,0,0,-8,1,0,0,0,0,0,0,0,0,-9,1,0,0,0,0,0,0,0,0,0,
%U A132013 -10,1,0,0,0,0,0,0,0,0,0,0,-11,1,0,0,0,0,0,0,0,0,0,0,0,-12,1
%N A132013 T(n,j) for an iterated mixed order Laguerre transform. Coefficients of the normalized generalized Laguerre polynomials (-1)^n*n!*L(n,1-n,x).
%C A132013 The matrix operation b = T*a can be characterized in several ways in terms of the coefficients a(n) and b(n), their o.g.f.s A(x) and B(x), or e.g.f.s EA(x) and EB(x).
%C A132013 1) b(0) = a(0), b(n) = a(n) - n*a(n-1) for n > 0
%C A132013 2) b(n) = n! Lag{n,(.)!*Lag[.,a(.),0],-1}, umbrally
%C A132013 3) b(n) = n! Sum_{j=0..min(1,n)} (-1)^j * binomial(n,j)*a(n-j)/(n-j)!
%C A132013 4) b(n) = (-1)^n n! Lag(n,a(.),1-n)
%C A132013 5) B(x) = (1-xDx) A(x) = [1-x*Lag(1,-xD:,0)] A(x)
%C A132013 6) EB(x) = (1-x) EA(x),
%C A132013 where D is the derivative w.r.t. x and Lag(n,x,m) is the associated Laguerre polynomial of order m. These formulas are easily generalized for repeated applications of the operator.
%C A132013 c = (1,-1,0,0,0,...) is the sequence associated to T under the list partition transform and the associated operations described in A133314. The reciprocal sequence is d = (0!,1!,2!,3!,4!,...).
%C A132013 Consequently, the inverse of T is TI(n,k) = binomial(n,k)*d(n-k) = A094587, which has the property that the terms at and below TI(m,m) are the associated sequence under the list partition transform for the inverse for T^(m+1) for m=0,1,2,3,... .
%C A132013 Row sums of T = [formula 3 with all a(n) = 1] = [binomial transform of c] = [coefficients of B(x) with A(x) = 1/(1-x)] = A024000 = (1,0,-1,-2,-3,...), with e.g.f. = [EB(x) with EA(x) = exp(x)] = (1-x) * exp(x) = exp(x)*exp(c(.)*x) = exp[(1+c(.))*x].
%C A132013 Alternating row sums of T = [formula 3 with all a(n) = (-1)^n] = [finite differences of c] = [coefficients of B(x) with A(x) = 1/(1+x)] = (1,-2,3,-4,...), with e.g.f. = [EB(x) with EA(x) = exp(-x)] = (1-x) * exp(-x) = exp(-x)*exp(c(.)*x) = exp[-(1-c(.))*x].
%C A132013 An e.g.f. for the o.g.f.s for repeated applications of T on A(x) is given by
%C A132013 exp[t*(1-xDx)] A(x) = e^t * Sum_{n=0,1,...} (-t*x)^n * Lag(n,-:xD:,0) A(x)
%C A132013 = e^t * exp{[-t*u/(1+t*u)]*:xD:} / (1+t*u) A(x) (eval. at u=x)
%C A132013 = e^t * A[x/(1+t*x)]/(1+t*x) .
%C A132013 See A132014 for more notes on repeated applications.
%H A132013 G. C. Greubel, <a href="/A132013/b132013.txt">Rows n=0..100 of triangle, flattened</a>
%H A132013 T. Copeland, <a href="http://tcjpn.wordpress.com/2016/11/06/compositional-inverse-operators-and-sheffer-sequences/">Compositional inverse operators and Sheffer sequences</a>, 2016.
%H A132013 M. Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Janjic/janjic22.html">Some classes of numbers and derivatives</a>, JIS 12 (2009) #09.8.3.
%H A132013 Wikipedia, <a href="http://en.wikipedia.org/wiki/Appell_sequence">Appell sequence</a>
%F A132013 T(n,k) = binomial(n,k)*c(n-k), with the sequence c defined in the comments.
%F A132013 E.g.f.: exp(x*y)(1-x), which implies the row polynomials form an Appell sequence. More relations can be found in A132382. - _Tom Copeland_, Dec 03 2013
%F A132013 From _Tom Copeland_, Apr 21 2014: (Start)
%F A132013 Change notation letting L(n,m,x) = Lag(n,x,m).
%F A132013 Row polynomials: (-1)^n*n!*L(n,1-n,x) = -x^(n-1)*L(1,n-1,x) =
%F A132013 (-1)^n*(1/(1-n)!)*K(-n,1-n+1,x) where K is Kummer's confluent hypergeometric function (as a limit of n+s as s tends to zero).
%F A132013 For the row polynomials, the lowering operator = d/dx and the raising operator = x - 1/(1-D).
%F A132013 T = I - A132440 = 2*I - exp[A238385-I] = signed exp[A238385-I], where I = identity matrix.
%F A132013 Operationally, (-1)^n*n!*L(n,1-n,-:xD:) = -x^(n-1)*:Dx:^n*x^(1-n) = (-1)^n*x^(-1)*:xD:^n*x = (-1)^n*n!*binomial(xD+1,n) = (-1)^n*n!*binomial(1,n)*K(-n,1-n+1,-:xD:) where :AB:^n = A^n*B^n for any two operators. Cf. A235706. (End)
%F A132013 The unsigned row polynomials have e.g.f. (1+t)e^(xt) = exp(t*p.(x)), umbrally, and p_n(x) = (1+D) x^n. With q_n(x) the row polynomials of A094587, p_n(x) = u_n(q.(v.(x))), umbrally, where u_n(x) = (-1)^n v_n(-x) = (-1)^n Lah_n(x), the Lah polynomials with e.g.f. exp[x*t/(t-1)]. This has the matrix form unsigned [T] = [p] = [u]*[q]*[v]. Conversely, q_n(x) = v_n (p.(u.(x))). - _Tom Copeland_, Nov 10 2016
%F A132013 n-th row polynomial: n!*Sum_{k = 0..n} (-1)^k*binomial(n,k)*Lag(k,1,x). - _Peter Bala_, Jul 25 2021
%e A132013 First few rows of the triangle are
%e A132013    1;
%e A132013   -1,  1;
%e A132013    0, -2,  1;
%e A132013    0,  0, -3,  1;
%e A132013    0,  0,  0, -4,  1;
%e A132013    0,  0,  0,  0, -5,  1;
%e A132013    0,  0,  0,  0,  0, -6,  1;
%e A132013    0,  0,  0,  0,  0,  0, -7,  1;
%p A132013 c := n -> `if`(n=0,1,`if`(n=1,-1,0)):
%p A132013 T := (n,k) -> binomial(n,k)*c(n-k); # _Peter Luschny_, Nov 14 2016
%t A132013 Table[PadLeft[{-n, 1}, n+1], {n, 0, 13}] // Flatten (* _Jean-François Alcover_, Apr 29 2014 *)
%o A132013 (PARI) row(n) = Vecrev((-1)^n*n!*pollaguerre(n, 1-n)); \\ _Michel Marcus_, Jul 26 2021
%Y A132013 Cf. A235706, A132382, A132159, A094587, A132014, A154955, A235706.
%K A132013 easy,sign,tabl
%O A132013 0,5
%A A132013 _Tom Copeland_, Oct 30 2007
%E A132013 Title modified by _Tom Copeland_, Apr 21 2014