cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132025 Decimal expansion of Product_{k>=0} 1-1/(2*9^k).

This page as a plain text file.
%I A132025 #11 May 08 2023 02:27:26
%S A132025 4,6,8,9,4,5,1,7,8,3,6,7,0,2,3,6,9,3,2,8,3,2,8,0,0,3,5,4,1,8,6,5,6,3,
%T A132025 9,4,0,6,8,0,4,5,7,5,8,6,9,8,9,8,5,6,0,1,6,7,1,9,7,9,9,2,3,2,7,4,7,5,
%U A132025 7,3,2,8,3,4,6,7,0,4,3,8,1,7,5,4,9,5,0,9,4,2,7,5,7,0,0,0,1,5,9,1,7,1,1
%N A132025 Decimal expansion of Product_{k>=0} 1-1/(2*9^k).
%F A132025 Equals lim inf_{n->oo} Product_{k=0..floor(log_9(n))} floor(n/9^k)*9^k/n.
%F A132025 Equals lim inf_{n->oo} A132033(n)/n^(1+floor(log_9(n)))*9^(1/2*(1+floor(log_9(n)))*floor(log_9(n))).
%F A132025 Equals lim inf_{n->oo} A132033(n)/n^(1+floor(log_9(n)))*9^A000217(floor(log_9(n))).
%F A132025 Equals (1/2)*exp(-Sum_{n>0} 9^(-n)*Sum_{k|n} 1/(k*2^k)).
%F A132025 Equals lim inf_{n->oo} A132033(n)/A132033(n+1).
%F A132025 Equals Product_{n>=1} (1 - 1/A270369(n)). - _Amiram Eldar_, May 08 2023
%e A132025 0.4689451783670236932832800...
%t A132025 digits = 103; NProduct[1-1/(2*9^k), {k, 0, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+5] // N[#, digits+5]& // RealDigits[#, 10, digits]& // First (* _Jean-François Alcover_, Feb 18 2014 *)
%t A132025 RealDigits[QPochhammer[1/2, 1/9], 10, 120][[1]] (* _Amiram Eldar_, May 08 2023 *)
%Y A132025 Cf. A048651, A098844, A067080, A132019, A132026, A132033, A132037, A000217, A270369.
%K A132025 nonn,cons
%O A132025 0,1
%A A132025 _Hieronymus Fischer_, Aug 14 2007