This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132035 #18 Sep 22 2024 17:49:14 %S A132035 8,3,6,7,9,5,4,0,7,0,8,9,0,3,7,8,7,1,0,2,6,7,2,9,7,9,8,1,4,6,1,3,6,2, %T A132035 4,1,3,5,2,4,3,6,4,3,5,8,7,6,7,1,6,5,1,9,9,6,4,1,1,5,1,0,1,7,7,0,0,9, %U A132035 1,6,0,1,2,6,5,4,2,7,6,0,5,8,7,8,7,5,5,5,4,2,8,4,9,0,5,1,2,0,2,1,7,5,3 %N A132035 Decimal expansion of Product_{k>0} (1-1/7^k). %H A132035 Richard J. McIntosh, <a href="https://doi.org/10.1112/jlms/51.1.120">Some Asymptotic Formulae for q-Hypergeometric Series</a>, Journal of the London Mathematical Society, Vol. 51, No. 1 (1995), pp. 120-136; <a href="https://citeseerx.ist.psu.edu/pdf/4f03a5e304ec19f8a725774525aecd2a78f4ad81">alternative link</a>. %F A132035 Equals exp(-Sum_{n>0} sigma_1(n)/(n*7^n)) = exp(-Sum_{n>0} A000203(n)/(n*7^n)). %F A132035 From _Amiram Eldar_, May 09 2023: (Start) %F A132035 Equals sqrt(2*Pi/log(7)) * exp(log(7)/24 - Pi^2/(6*log(7))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(7))) (McIntosh, 1995). %F A132035 Equals Sum_{n>=0} (-1)^n/A027875(n). (End) %e A132035 0.8367954070890378710... %t A132035 digits = 103; NProduct[1-1/7^k, {k, 1, Infinity}, NProductFactors -> 200, WorkingPrecision -> digits+3] // N[#, digits+3]& // RealDigits[#, 10, digits]& // First (* _Jean-François Alcover_, Feb 18 2014 *) %t A132035 RealDigits[QPochhammer[1/7], 10, 100][[1]] (* _Amiram Eldar_, May 09 2023 *) %o A132035 (PARI) prodinf(k=1, 1 - 1/(7^k)) \\ _Amiram Eldar_, May 09 2023 %Y A132035 Cf. A027875, A048651, A100220, A132023, A132026, A132038, A098844, A067080, A000203. %K A132035 nonn,cons %O A132035 0,1 %A A132035 _Hieronymus Fischer_, Aug 14 2007