A132058
Row sums of triangle A132057 (s2(8)).
Original entry on oeis.org
1, 29, 1037, 40559, 1667583, 70782699, 3071608779, 135473190854, 6049729693582, 272822775416318, 12401578633961126, 567447248339504450, 26107796156861857866, 1206858263561650517658, 56014709781906608746434
Offset: 1
A132059
Alternating row sums of triangle A132057 (s2(8)).
Original entry on oeis.org
1, 27, 925, 35069, 1406679, 58491537, 2493656187, 108280678092, 4768395658314, 212335592489544, 9540877059969102, 431908789303835976, 19675192863275361294, 901089855844979674068, 41459199062515242868098
Offset: 1
A132056
Triangle read by rows, the Bell transform of Product_{k=0..n} 7*k+1 without column 0.
Original entry on oeis.org
1, 8, 1, 120, 24, 1, 2640, 672, 48, 1, 76560, 22800, 2160, 80, 1, 2756160, 920160, 104880, 5280, 120, 1, 118514880, 43243200, 5639760, 347760, 10920, 168, 1, 5925744000, 2323918080, 336510720, 24071040, 937440, 20160, 224, 1
Offset: 1
{1}; {8,1}; {120,24,1}; {2640,672,48,1}; ...
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- M. Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3
- W. Lang, First 10 rows.
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> mul(7*k+1, k=0..n), 8); # Peter Luschny, Jan 27 2016
-
a[n_, m_] := a[n, m] = ((m*a[n-1, m-1]*(m-1)! + (m+7*n-7)*a[n-1, m]*m!)*n!)/(n*m!*(n-1)!);
a[n_, m_] /; n < m = 0; a[_, 0] = 0; a[1, 1] = 1;
Flatten[Table[a[n, m], {n, 1, 8}, {m, 1, n}]][[1 ;; 36]]
(* Jean-François Alcover, Jun 17 2011 *)
rows = 8;
a[n_, m_] := BellY[n, m, Table[Product[7k+1, {k, 0, j}], {j, 0, rows}]];
Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
Showing 1-3 of 3 results.
Comments