This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132093 #25 Sep 22 2024 17:54:45 %S A132093 1,10,350,1050,57750,250250,2388750,2231250,1088106250,137156250, %T A132093 105761906250,2289218750,8842968750,51289218750,45049030468750, %U A132093 3563716406250,1099667378906250,4714260332031250,14142780996093750 %N A132093 Denominators of Blandin-Diaz compositional Bernoulli numbers (B^sin)_3,n. %C A132093 Numerators and denominators given only for even n (odd n have numerators = 0). %D A132093 J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199. See Table 3.3. %H A132093 Hector Blandin and Rafael Diaz, <a href="https://arxiv.org/abs/0708.0809">Compositional Bernoulli numbers</a>, p. 8, arXiv:0708.0809 [math.CO], 2007-2008. %F A132093 ((x^3)/3!)/(sin(x)-x) = Sum_{n>=0} (B^sin)_3,n ((x^n)/n!). %e A132093 -1, 0, -1/10, 0, -11/350, 0, -17,1050, 0, -563/57750, 0, -381/250250, 0. %t A132093 m = 20; %t A132093 ((x^3)/3!)/(Sin[x]-x) + O[x]^(2m) // CoefficientList[#, x]& // #*Range[0, 2m-2]!& // #[[;; ;; 2]]& // Denominator (* _Jean-François Alcover_, Mar 23 2020 *) %o A132093 (PARI) my(N=40, x='x+O('x^N), v=apply(denominator, Vec(serlaplace(x^3/(6*(sin(x)-x)))))); vector(#v\2, k, v[2*k-1]) \\ _Michel Marcus_, Jan 24 2024 %Y A132093 Numerators are A132092. %Y A132093 Cf. A132094-A132099. %K A132093 frac,nonn %O A132093 0,2 %A A132093 _Jonathan Vos Post_, Aug 09 2007 %E A132093 More terms from _R. J. Mathar_, May 25 2008 %E A132093 Offset corrected as suggested by _Andrew Howroyd_. - _N. J. A. Sloane_, Sep 22 2024