This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132096 #34 Jan 24 2024 10:07:13 %S A132096 1,-1,1,1,61,-1,-12491,-479,530629,54979,1039405,-4981183, %T A132096 -9055875786121,908993573959,288260975797477,7874837285353, %U A132096 -2255621632465386299,-189404901989770501,-20038592583515962234111,954329155426992424481,1731149375200514221429374109 %N A132096 Numerators of Blandin-Diaz compositional Bernoulli numbers (B^Z)_1,n. %H A132096 Hector Blandin and Rafael Diaz, <a href="http://arXiv.org/abs/0708.0809">Compositional Bernoulli numbers</a>, arXiv:0708.0809 [math.CO], 2007-2008, p. 9, 1st table. %F A132096 This sequence appears to be the numerators of the first column in the matrix inverse of the lower triangular matrix: If n >= k then binomial(n-1,k-1)/(n-k+1)^2, otherwise 0. - _Mats Granvik_, Feb 05 2018 %F A132096 a(n) = numerator(f(n)), where f(0) = 1, f(n) = -Sum_{k=0..n-1} f(k) * binomial(n,k) / (n-k+1)^2. - _Daniel Suteu_, Feb 23 2018 %e A132096 1, -1/4, 1/72, 1/96, 61/21600, -1/640, -12491/5080320, -479/680608. %t A132096 nn = 21; A = Inverse[Table[Table[If[n >= k, Binomial[n - 1, k - 1]/(n - k + 1)^2, 0], {k, 1, nn}], {n, 1, nn}]]; Numerator[A[[All, 1]]] (* _Mats Granvik_, Feb 05 2018 *) %Y A132096 Denominators are A132097. %Y A132096 Cf. A132092-A132099. %K A132096 frac,sign %O A132096 0,5 %A A132096 _Jonathan Vos Post_, Aug 09 2007