This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132097 #30 Jan 24 2024 10:07:21 %S A132097 1,4,72,96,21600,640,5080320,580608,326592000,20736000,2529128448, %T A132097 1094860800,1298164008960000,399435079680000,11298306539520000, %U A132097 231760134144000,48978158848819200000,768284844687360000,81541143706048266240000,1009797445276139520000,467359502609929273344000000 %N A132097 Denominators of Blandin-Diaz compositional Bernoulli numbers (B^Z)_1,n. %H A132097 Hector Blandin and Rafael Diaz, <a href="http://arXiv.org/abs/0708.0809">Compositional Bernoulli numbers</a>, arXiv:0708.0809 [math.CO], 2007-2008, p. 9, 1st table. %F A132097 a(n) = denominator(f(n)), where f(0) = 1, f(n) = -Sum_{k=0..n-1} f(k) * binomial(n,k) / (n-k+1)^2. - _Daniel Suteu_, Feb 23 2018 %e A132097 1, -1/4, 1/72, 1/96, 61/21600, -1/640, -12491/5080320, -479/680608. %t A132097 nn = 21; A = Inverse[Table[Table[If[n >= k, Binomial[n - 1, k - 1]/(n - k + 1)^2, 0], {k, 1, nn}], {n, 1, nn}]]; Denominator[A[[All, 1]]] (* _Mats Granvik_, Feb 03 2018 *) %Y A132097 Numerators are A132096. %Y A132097 Cf. A132092-A132099. %K A132097 frac,nonn %O A132097 0,2 %A A132097 _Jonathan Vos Post_, Aug 09 2007