This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132111 #20 Jun 14 2021 04:15:24 %S A132111 0,1,3,4,7,12,9,13,19,27,16,21,28,37,48,25,31,39,49,61,75,36,43,52,63, %T A132111 76,91,108,49,57,67,79,93,109,127,147,64,73,84,97,112,129,148,169,192, %U A132111 81,91,103,117,133,151,171,193,217,243,100,111,124,139,156,175,196,219 %N A132111 Triangle read by rows: T(n,k) = n^2 + k*n + k^2, 0 <= k <= n. %C A132111 Permutation of A003136, the Loeschian numbers. [This is false - some terms are repeated, the first being 49. - _Joerg Arndt_, Dec 18 2015] %C A132111 Row sums give A132112. %C A132111 Central terms give A033582. %C A132111 T(n,k+1) = T(n,k) + n + 2*k + 1; %C A132111 T(n+1,k) = T(n,k) + 2*n + k + 1; %C A132111 T(n+1,k+1) = T(n,k) + 3*(n+k+1); %C A132111 T(n,0) = A000290(n); %C A132111 T(n,1) = A002061(n+1) for n>0; %C A132111 T(n,2) = A117950(n+1) for n>1; %C A132111 T(n,n-2) = A056107(n-1) for n>1; %C A132111 T(n,n-1) = A003215(n-1) for n>0; %C A132111 T(n,n) = A033428(n). %C A132111 T(n,k) is the norm N(alpha) of the integer alpha = n*1 - k*omega, where omega = exp(2*Pi*i/3) = (-1 + i*sqrt(3))/2 in the imaginary quadratic number field Q(sqrt(-3)): N = |alpha|^2 = (n + k/2)^2 + (3/4)*k^2 = n^2 + n*k + k^2 = T(n,k), with n >= 0, and k <= n. See also triangle A073254 for T(n,-k). - _Wolfdieter Lang_, Jun 13 2021 %e A132111 From _Philippe Deléham_, Apr 16 2014: (Start) %e A132111 Triangle begins: %e A132111 0; %e A132111 1, 3; %e A132111 4, 7, 12; %e A132111 9, 13, 19, 27; %e A132111 16, 21, 28, 37, 48; %e A132111 25, 31, 39, 49, 61, 75; %e A132111 36, 43, 52, 63, 76, 91, 108; %e A132111 49, 57, 67, 79, 93, 109, 127, 147; %e A132111 64, 73, 84, 97, 112, 129, 148, 169, 192; %e A132111 81, 91, 103, 117, 133, 151, 171, 193, 217, 243; %e A132111 ... %e A132111 (End) %t A132111 Flatten[Table[n^2+k*n+k^2,{n,0,10},{k,0,n}]] (* _Harvey P. Dale_, Jun 10 2013 *) %Y A132111 Cf. A073254. %K A132111 nonn,tabl,easy %O A132111 0,3 %A A132111 _Reinhard Zumkeller_, Aug 10 2007