This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132180 #13 Feb 16 2025 08:33:06 %S A132180 1,1,3,1,6,3,12,5,21,10,36,15,60,26,96,39,150,63,228,92,342,140,504, %T A132180 201,732,295,1050,415,1488,591,2088,818,2901,1140,3996,1554,5460,2126, %U A132180 7404,2861,9972,3855,13344,5126,17748,6816,23472,8970,30876,11793,40413 %N A132180 Expansion of f(q, q^2) * f(-q^3) / f(-q^2)^2 in powers of q where f(, ), f() are Ramanujan theta functions. %C A132180 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). %H A132180 G. C. Greubel, <a href="/A132180/b132180.txt">Table of n, a(n) for n = 0..1000</a> %H A132180 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a> %H A132180 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a> %F A132180 Expansion of eta(q^3)^3 / (eta(q) * eta(q^2) * eta(q^6)) in powers of q. %F A132180 Euler transform of period 6 sequence [ 1, 2, -2, 2, 1, 0, ...]. %F A132180 G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (v^2 - 2*u)^3 - u^4 * (2*u - 3*v^2) * (4*u - 3*v^2). %F A132180 G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (2/3) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A132179. %F A132180 G.f.: Product_{k>0} (1 + x^k + x^(2*k))^2 / ( (1 + x^k)^2 * (1 - x^k + x^(2*k))). %F A132180 a(2*n) = A128128(n). a(2*n + 1) = A132302(n). %e A132180 G.f. = 1 + q + 3*q^2 + q^3 + 6*q^4 + 3*q^5 + 12*q^6 + 5*q^7 + 21*q^8 + 10*q^9 + ... %t A132180 a[ n_] := SeriesCoefficient[ QPochhammer[ q^3]^3 / (QPochhammer[ q] QPochhammer[ q^2] QPochhammer[ q^6]), {q, 0, n}]; (* _Michael Somos_, Apr 26 2015 *) %t A132180 a[ n_] := SeriesCoefficient[ QPochhammer[ -q, q^3] QPochhammer[ -q^2, q^3] QPochhammer[ q^3]^2 / QPochhammer[ q^2]^2, {q, 0, n}]; (* _Michael Somos_, Nov 01 2015 *) %o A132180 (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 / (eta(x + A) * eta(x^2 + A) * eta(x^6 + A)), n))}; %Y A132180 Cf. A128128, A132179, A132302. %K A132180 nonn %O A132180 0,3 %A A132180 _Michael Somos_, Aug 12 2007