This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132191 #33 Jun 13 2017 12:12:10 %S A132191 1,1,2,1,4,3,1,6,9,4,1,12,18,16,5,1,12,54,40,25,6,1,40,72,160,75,36,7, %T A132191 1,28,405,280,375,126,49,8,1,96,390,2176,825,756,196,64,9,1,104,1944, %U A132191 2800,8125,2016,1372,288,81,10,1,280,3411,17920,13175,23976,4312,2304,405 %N A132191 Square array a(m,n) read by antidiagonals, defined by A000010(n)*a(m,n) = Sum_{k=1..n, gcd(k,n)=1} m^{ Sum_{d|n} A000010(d)/ (multiplicative order of k modulo d) }. %C A132191 From _Andrew Howroyd_, Apr 22 2017: (Start) %C A132191 Number of step shifted (decimated) sequences of length n using a maximum of m different symbols. See A056371 for an explanation of step shifts. - %C A132191 Number of mappings with domain {0..n-1} and codomain {1..m} up to equivalence. Mappings A and B are equivalent if there is a d, prime to n, such that A(i) = B(i*d mod n) for i in {0..n-1}. (End) %H A132191 Vincenzo Librandi, <a href="/A132191/b132191.txt">Table of n, a(n) for n = 1..1830</a> %H A132191 Max Alekseyev, <a href="/A132191/a132191.txt">First 20 rows and columns of table</a> %H A132191 R. C. Titsworth, <a href="http://projecteuclid.org/euclid.ijm/1256059671">Equivalence classes of periodic sequences</a>, Illinois J. Math., 8 (1964), 266-270. %e A132191 Array begins: %e A132191 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A132191 2, 4, 6, 12, 12, 40, 28, 96, 104, 280, 216, 1248, 704, 2800, 4344, 8928, 8232, 44224, 29204, 136032, ... %e A132191 3, 9, 18, 54, 72, 405, 390, 1944, 3411, 14985, 17802, 139968, 133104, 798525, 1804518, 5454378, 8072532, 64599849, 64573626, 437732424, ... %e A132191 4, 16, 40, 160, 280, 2176, 2800, 17920, 44224, 263296, 419872, 4280320, 5594000, 44751616, 134391040, 539054080, 1073758360, 11453771776, 15271054960, 137575813120, ... %e A132191 5, 25, 75, 375, 825, 8125, 13175, 103125, 327125, 2445625, 4884435, 61640625, 101732425, 1017323125, 3816215625, 19104609375, 47683838325, 635787765625, 1059638680675, 11924780390625, ... %t A132191 a[m_, n_] := (1/EulerPhi[n])*Sum[If[GCD[k, n]==1, m^DivisorSum[n, EulerPhi[#] / MultiplicativeOrder[k, #]&], 0], {k, 1, n}]; Table[a[m-n+1, n], {m, 1, 15}, {n, m, 1, -1}] // Flatten (* _Jean-François Alcover_, Dec 01 2015 *) %o A132191 (PARI) for(i=1,15,for(m=1,i,n=i-m+1; print1(sum(k=1, n, if(gcd(k,n)==1, m^sumdiv(n,d,eulerphi(d)/znorder(Mod(k,d))),0))/eulerphi(n)","))) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 26 2008 %Y A132191 Row m=2 is A056371 %Y A132191 Row m=3 is A056372 %Y A132191 Row m=4 is A056373 %Y A132191 Row m=5 is A056374 %Y A132191 Row m=6 is A056375 %Y A132191 Column n=2 is A000290 %Y A132191 Column n=3 is A002411 %Y A132191 Column n=4 is A019582 %Y A132191 Cf. A285522, A285548. %K A132191 nonn,tabl %O A132191 1,3 %A A132191 _N. J. A. Sloane_, Dec 01 2007, based on email from _Max Alekseyev_, Nov 08 2007 %E A132191 More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 26 2008 %E A132191 Offset corrected by _Andrew Howroyd_, Apr 20 2017