This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132193 #30 May 19 2025 08:16:56 %S A132193 0,1,2,4,3,5,9,4,6,8,10,16,5,7,9,11,13,17,25,6,8,10,12,14,18,20,26,36, %T A132193 7,9,11,13,15,17,19,21,25,27,29,37,49,8,10,12,14,16,18,20,22,24,26,28, %U A132193 30,32,34,38,40,50,64,9,11,13,15,17,19,21,23,25,27,29,31,33,35,39,41,45,51,53,65,81 %N A132193 Triangle whose n-th row is the list in increasing order of the integers which are the sum of squares of positive integers with sum n. The n-th row begins with n and ends with n^2. %C A132193 The n-th row is the list of possible dimensions of the commutant space of an n X n matrix A, i.e. the set of matrices M such that A*M=M*A. The number of elements in the n-th row is given by the sequence A069999. - Corrected by _Ricardo C. Santamaria_, Nov 08 2012 %H A132193 Alois P. Heinz, <a href="/A132193/b132193.txt">Rows n = 0..50, flattened</a> (first 1000 terms from Jean-François Alcover) %e A132193 T(4,1)=4 because 4=1+1+1+1 and 1^2+1^2+1^2+1^2=4 ; T(4,2)=6 because 4=2+1+1 and 2^2+1^2+1^2=6. %e A132193 Triangle T(n,k) begins: %e A132193 0; %e A132193 1; %e A132193 2, 4; %e A132193 3, 5, 9; %e A132193 4, 6, 8, 10, 16; %e A132193 5, 7, 9, 11, 13, 17, 25; %e A132193 6, 8, 10, 12, 14, 18, 20, 26, 36; %e A132193 7, 9, 11, 13, 15, 17, 19, 21, 25, 27, 29, 37, 49; %e A132193 ... %p A132193 b:= proc(n, i) option remember; `if`(n=0 or i=1, {n}, %p A132193 {b(n, i-1)[], map(x-> x+i^2, b(n-i, min(n-i, i)))[]}) %p A132193 end: %p A132193 T:= n-> sort([b(n$2)[]])[]: %p A132193 seq(T(n), n=0..10); # _Alois P. Heinz_, Jun 06 2022 %t A132193 selQ[n_][p_] := MemberQ[#.# & /@ IntegerPartitions[n], p]; row[n_] := Select[Range[n, n^2], selQ[n] ]; Table[row[n], {n, 1, 10}] // Flatten (* _Jean-François Alcover_, Dec 11 2013 *) %Y A132193 Cf. A069999. %K A132193 nonn,look,tabf %O A132193 0,3 %A A132193 _Roger Cuculière_, Nov 05 2007 %E A132193 More terms from _Ricardo C. Santamaria_, Nov 08 2012 %E A132193 Row n=0 prepended by _Alois P. Heinz_, Jun 06 2022