This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132217 #14 Feb 16 2025 08:33:06 %S A132217 1,1,1,2,3,4,6,8,11,15,19,25,33,42,53,68,86,107,134,166,205,253,309, %T A132217 377,460,557,672,811,974,1166,1394,1661,1975,2344,2773,3275,3863,4543, %U A132217 5333,6253,7316,8544,9964,11600,13484,15653,18140,20994,24269,28011,32288 %N A132217 Expansion of psi(x^6) / psi(-x) in powers of x where psi() is a Ramanujan theta function. %C A132217 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). %H A132217 G. C. Greubel, <a href="/A132217/b132217.txt">Table of n, a(n) for n = 0..1000</a> %H A132217 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a> %H A132217 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a> %F A132217 Expansion of q^(-5/8) * eta(q^2) * eta(q^12)^2 / (eta(q) * eta(q^4) * eta(q^6)) in powers of q. %F A132217 Euler transform of period 12 sequence [ 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, ...]. %F A132217 Product_{k>0} (1 - x^(12*k)) * (1 - x^(2*k) + x^(4*k)) / (1 - x^k). %F A132217 Expansion of f(-x^2, -x^10) / f(-x, -x^2) in powers of x where f(, ) is Ramanujan's general theta function. - _Michael Somos_, Oct 06 2015 %F A132217 Number of partitions of n into parts not congruent to 0, 2, 10 (mod 12). - _Michael Somos_, Oct 06 2015 %F A132217 a(2*n) = A262987(n). - _Michael Somos_, Oct 06 2015 %F A132217 a(n) ~ exp(sqrt(n/2)*Pi) / (2^(11/4) * sqrt(3) * n^(3/4)). - _Vaclav Kotesovec_, Oct 06 2015 %e A132217 G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 11*x^8 + 15*x^9 + ... %e A132217 G.f. = q^5 + q^13 + q^21 + 2*q^29 + 3*q^37 + 4*q^45 + 6*q^53 + 8*q^61 + 11*q^69 + ... %t A132217 a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^3] / (2^(1/2) x^(5/8) EllipticTheta[ 2, Pi/4, x^(1/2)]), {x, 0, n}]; (* _Michael Somos_, Oct 06 2015 *) %t A132217 a[ n_] := SeriesCoefficient[ QPochhammer[ x^12] QPochhammer[ x^2, x^12] QPochhammer[ x^10, x^12] / QPochhammer[ x], {x, 0, n}]; (* _Michael Somos_, Oct 06 2015 *) %o A132217 (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff(eta(x^2 + A) * eta(x^12 + A)^2 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)), n))}; %Y A132217 Cf. A262987. %K A132217 nonn %O A132217 0,4 %A A132217 _Michael Somos_, Aug 13 2007