This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132222 #19 Jul 06 2020 20:22:29 %S A132222 1,3,7,9,13,15,19,21,25,29,31,35,37,41,43,47,51,53,57,59,63,65,69,73, %T A132222 75,79,81,85,87,91,95,97,101,103,107,109,113,117,119,123,125,129,131, %U A132222 135,139,141,145,147,151,153,157,161,163,167,169,173,175,179,183,185,189 %N A132222 Beatty sequence 1+2*floor(n*Pi/2), which contains infinitely many primes. %C A132222 The primes in this entirely odd sequence begin 3, 7, 13, 19, 29, 31, 37, 41, 43, 47, 53, 59, 73, 79, 97, 101. By the theorems in Banks, there are an infinite number of primes in this sequence. %H A132222 William D. Banks and Igor E. Shparlinski, <a href="http://arXiv.org/abs/0708.1015">Prime numbers with Beatty sequences</a>, arXiv:0708.1015 [math.NT], 2007. %F A132222 a(n) = 1 + 2*floor(n*Pi/2). %F A132222 a(n) = 1 + 2*A140758(n). - _L. Edson Jeffery_, Mar 16 2013 %e A132222 a(0) = 1 because 1 + 2*floor(0*Pi) = 1 + 2*0 = 1 + 0 = 1. %e A132222 a(1) = 3 because 1 + 2*floor(1*Pi/2) = 1 + 2*floor(1.5707963) = 1 + 2*1 = 3. %e A132222 a(2) = 7 because 1 + 2*floor(2*Pi/2) = 1 + 2*floor(3.1415926) = 1 + 2*3 = 7. %e A132222 a(3) = 9 because 1 + 2*floor(3*Pi/2) = 1 + 2*floor(4.7123889) = 1 + 2*4 = 9. %e A132222 a(4) = 13 because 1 + 2*floor(4*Pi/2) = 1 + 2*floor(6.2831853) = 1 + 2*6 = 13. %e A132222 a(5) = 15 because 1 + 2*floor(5*Pi/2) = 1 + 2*floor(7.8539816) = 1 + 2*7 = 15. %e A132222 a(7) = 21 because 1 + 2*floor(7*Pi/2) = 1 + 2*floor(10.995574) = 1 + 2*10 = 21. %t A132222 Table[1 + 2*Floor[n*Pi/2], {n, 0, 60}] (* _Stefan Steinerberger_, Sep 02 2007 *) %Y A132222 Cf. A019669, A130568, A140758. %K A132222 easy,nonn %O A132222 0,2 %A A132222 _Jonathan Vos Post_, Aug 14 2007 %E A132222 More terms from _Stefan Steinerberger_, Sep 02 2007