cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132264 Product{0<=k<=floor(log_12(n)), floor(n/12^k)}, n>=1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 300, 305, 310, 315
Offset: 1

Views

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

If n is written in base-12 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product d(m)d(m-1)d(m-2)...d(2)d(1)d(0)*d(m)d(m-1)d(m-2)...d(2)d(1)*d(m)d(m-1)d(m-2)...d(2)*...*d(m)d(m-1)d(m-2)*d(m)d(m-1)*d(m).

Examples

			a(50)=floor(50/12^0)*floor(50/12^1)=50*4=200.
a(65)=325 since 65=55(base-12) and so a(65)=55*5(base-12)=65*5=325.
		

Crossrefs

For the product of terms floor(n/p^k) for p=2 to p=11 see A098844(p=2), A132027(p=3)-A132033(p=9), A067080(p=10), A132263(p=11).
For the products of terms 1+floor(n/p^k) see A132269-A132272, A132327, A132328.

Formula

The following formulas are given for a general parameter p considering the product of terms floor(n/p^k) for 0<=k<=floor(log_p(n)), where p=12 for this sequence.
Recurrence: a(n)=n*a(floor(n/p)); a(n*p^m)=n^m*p^(m(m+1)/2)*a(n).
a(k*p^m)=k^(m+1)*p^(m(m+1)/2), for 0
Asymptotic behavior: a(n)=O(n^((1+log_p(n))/2)); this follows from the inequalities below.
a(n)<=b(n), where b(n)=n^(1+floor(log_p(n)))/p^((1+floor(log_p(n)))*floor(log_p(n))/2); equality holds for n=k*p^m, 0=0. b(n) can also be written n^(1+floor(log_p(n)))/p^A000217(floor(log_p(n))).
Also: a(n)<=q^((1-log_p(q))/2)*n^((1+log_p(n))/2)=q^((1-log_p(q))/2)*p^A000217(log_p(n)), equality holds for n=q*p^m, m>=0, where q=floor(sqrt(p)+1/2). Also, equality holds for n=(q+1)*p^m, provided p is a A002378-number (in this case we have p=q*(q+1) and so q^((1-log_p(q))/2)=(q+1)^((1-log_p(q+1))/2)).
a(n)>c*b(n), where c=product{k>0, 1-1/(2*p^k)}=0.47735217025489380... (for p=12 see constant A132265).
Also: a(n)>c*(sqrt(2)/2^log_p(sqrt(2)))*n^((1+log_p(n))/2)=0.612870619...*p^A000217(log_p(n)), (p=12).
lim inf a(n)/b(n)=product{k>0, 1-1/(2*p^k)}=0.47735217025489380198334286365820..., for n-->oo (for p=12 see constant A132265).
lim sup a(n)/b(n)=1, for n-->oo.
lim inf a(n)/n^((1+log_p(n))/2)=(sqrt(2)/2^log_p(sqrt(2)))*product{k>0, 1-1/(2*p^k)}=0.612870619..., for n-->oo, (p=12).
lim sup a(n)/n^((1+log_p(n))/2)=sqrt(q)/q^log_p(sqrt(q))=1.358593737..., for n-->oo, (p=12, q=round(sqrt(p))=3).
lim inf a(n)/a(n+1)=product{k>0, 1-1/(2*p^k)}=0.47735217025489380... for n-->oo (for p=12 see constant A132265).