This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132270 #44 Dec 31 2023 10:16:49 %S A132270 0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4, %T A132270 4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9, %U A132270 9,9,10,10,10,10,10,10 %N A132270 a(n) = floor((n^7-1)/(7*n^6)), which is the same as integers repeated 7 times. %H A132270 Wolfgang Hornfeck, <a href="https://doi.org/10.1107/S2053273323008276">Chiral spiral cyclic twins. II. A two-parameter family of cyclic twins composed of discrete circle involute spirals</a>, Acta Cryst. (2023) Vol. 79, Part 6, 570-586. %H A132270 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,1,-1). %F A132270 a(n) = floor((n^7-n^6)/(7*n^6-6*n^5)). - _Mohammad K. Azarian_, Nov 08 2007 %F A132270 G.f.: x^8/(1-x-x^7+x^8). - _Robert Israel_, Feb 02 2015 %F A132270 a(n) = a(n-1)+a(n-7)-a(n-8). - _Wesley Ivan Hurt_, May 03 2021 %F A132270 a(n) = floor((n-1)/7). - _M. F. Hasler_, May 19 2021 %F A132270 Sum_{n>=8} (-1)^n/a(n) = log(2) (A002162). - _Amiram Eldar_, Sep 30 2022 %p A132270 A132270:=n->floor((n-1)/7); seq(A132270(n), n=1..100); # _Wesley Ivan Hurt_, Dec 10 2013 %t A132270 Table[Floor[(n - 1)/7], {n, 100}] (* _Wesley Ivan Hurt_, Dec 10 2013 *) %t A132270 Table[PadRight[{},7,n],{n,0,10}]//Flatten (* or *) LinearRecurrence[ {1,0,0,0,0,0,1,-1},{0,0,0,0,0,0,0,1},100] (* _Harvey P. Dale_, Jun 08 2017 *) %o A132270 (PARI) a(n)=(n-1)\7 \\ _Charles R Greathouse IV_, Dec 10 2013 %Y A132270 Cf. A004526 ([n/2]), A002264 ([n/3]), A002265 ([n/4]), A002266 ([n/5]), A054895. %Y A132270 Cf. A152467 ([n/6]), A132292 ([(n-1)/8]). %Y A132270 Cf. A002162. %K A132270 nonn,easy %O A132270 1,15 %A A132270 _Mohammad K. Azarian_, Nov 06 2007 %E A132270 Offset corrected by _Mohammad K. Azarian_, Nov 19 2008