cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A106053 Next-to-central column of triangle in A059317.

Original entry on oeis.org

0, 0, 1, 2, 8, 22, 72, 218, 691, 2158, 6833, 21612, 68726, 218892, 699197, 2237450, 7174018, 23038582, 74097134, 238625222, 769407486, 2483532218, 8024499657, 25951580444, 83999410292, 272098963300, 882045339733, 2861184745710, 9286923094550, 30161343633746
Offset: 0

Views

Author

N. J. A. Sloane, May 28 2005

Keywords

Comments

Number of h steps in all paths in the first quadrant from (0,0) to (n-1,0) using steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0). Example: a(4)=8 because in the 6 (=A128720(3)) paths hhh, hH, Hh, hUD, UhD and UDh we have altogether 8 h-steps. a(n) = Sum_{k=0..n-1} k*A132277(n-1,k). - Emeric Deutsch, Sep 03 2007
Number of paths in the right half-plane from (0,0) to (n-1,1) consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0). Example: a(4)=8 because we have hhU, HU, hUh, Uhh, UH, DUU, UDU and UUD. Number of h-steps in all paths in the first quadrant from (0,0) to (n-1,0) using steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0). Example: a(4)=8 because in the 6 (=A128720(3)) paths from (0,0) to (3,0), namely, hhh, hH, Hh, hUD, UhD and UDh, we have altogether 8 h-steps. a(n) = Sum_{k=0..n-1} k*A132277(n-1,k). - Emeric Deutsch, Sep 03 2007

Crossrefs

Programs

  • Maple
    g:=((1-z-z^2-sqrt((1+z-z^2)*(1-3*z-z^2)))*1/2)/sqrt((1+z-z^2)*(1-3*z-z^2)): gser:=series(g,z=0,33); seq(coeff(gser,z,n),n=0..29); # Emeric Deutsch, Sep 03 2007
    g:=((1-z-z^2)*1/2)/sqrt((1+z-z^2)*(1-3*z-z^2))-1/2: gser:=series(g,z=0,33): seq(coeff(gser,z,n),n=0..30); # Emeric Deutsch, Sep 03 2007
  • Mathematica
    t[0, 0] = t[1, 0] = t[1, 1] = t[1, 2] = 1;
    t[n_ /; n >= 0, k_ /; k >= 0] /; k <= 2n := t[n, k] = t[n-1, k] + t[n-1, k-1] + t[n-1, k-2] + t[n-2, k-2];
    t[n_, k_] /; n<0 || k<0 || k>2n = 0;
    a[n_] := t[n-1, n-2];
    Table[a[n], {n, 0, 29}] (* Jean-François Alcover, Aug 07 2018 *)

Formula

G.f.: (1 - z - z^2 - sqrt((1+z-z^2)*(1-3z-z^2)))/(2*sqrt((1+z-z^2)*(1-3z-z^2))). - Emeric Deutsch, Sep 03 2007
G.f.: (1-z-z^2)/(2*sqrt((1+z-z^2)*(1-3z-z^2))) - 1/2. - Emeric Deutsch, Sep 03 2007

A132884 Triangle read by rows: T(n,k) is the number of paths in the right half-plane from (0,0) to (n,0), consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0), having k h=(1,0) steps (0<=k<=n).

Original entry on oeis.org

1, 0, 1, 3, 0, 1, 0, 8, 0, 1, 13, 0, 15, 0, 1, 0, 57, 0, 24, 0, 1, 63, 0, 156, 0, 35, 0, 1, 0, 384, 0, 340, 0, 48, 0, 1, 321, 0, 1380, 0, 645, 0, 63, 0, 1, 0, 2505, 0, 3800, 0, 1113, 0, 80, 0, 1, 1683, 0, 11145, 0, 8855, 0, 1792, 0, 99, 0, 1, 0, 16008, 0, 37065, 0, 18368, 0, 2736, 0
Offset: 0

Views

Author

Emeric Deutsch, Sep 03 2007

Keywords

Comments

T(2n,0)=A001850(n) (the central Delannoy numbers); T(2n+1,0)=0. T(2n,1)=0; T(2n-1,1)=A108666(n). T(n,k)=0 if n+k is odd. Row sums yield A059345. See A132277 for the same statistic on paths restricted to the first quadrant.

Examples

			Triangle starts:
   1;
   0,  1;
   3,  0,  1;
   0,  8,  0,  1;
  13,  0, 15,  0,  1;
   0, 57,  0, 24,  0,  1;
T(3,1)=8 because we have hH, Hh, hUD, UhD, UDh, hDU, DhU and DUh.
		

Crossrefs

Programs

  • Maple
    G:=1/sqrt((1-t*z-z^2)^2-4*z^2): Gser:=simplify(series(G,z=0,15)): for n from 0 to 11 do P[n]:=sort(coeff(Gser,z,n)) end do: for n from 0 to 11 do seq(coeff(P[n],t,j),j=0..n) end do; # yields sequence in triangular form

Formula

G.f. = 1/sqrt((1-tz-z^2)^2-4z^2).
Showing 1-2 of 2 results.