This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132311 #11 Oct 05 2020 09:49:06 %S A132311 0,1,1,1,1,1,1,2,2,1,1,4,7,4,1,1,6,28,28,6,1,1,11,117,318,117,11,1,1, %T A132311 14,388,3344,3344,388,14,1,1,21,1757,71277,290521,71277,1757,21,1,1, %U A132311 29,8270,2031198,53679222,53679222,2031198,8270,29,1,1,42,40243,74464383,19465193506,147286801214,19465193506,74464383,40243,42,1 %N A132311 Triangle read by rows: T(n,k) is the number of partitions of binomial(n,k) into parts of the first n rows of Pascal's triangle, 0<=k<=n. %C A132311 T(n,k) = T(n,n-k). %C A132311 T(n,0) = 1 for n>0. %C A132311 A000041(n) - 1 <= T(n,1) <= A000041(n) for n>1. %H A132311 Alois P. Heinz, <a href="/A132311/b132311.txt">Rows n = 0..18, flattened</a> %H A132311 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a> %e A132311 A007318(4,2) = A007318(6,1) = 6: T(4,2) = #{3+3, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1, 1+1+1+1+1+1} = 7, but T(6,1) = A000041(6) = 11. %e A132311 Triangle T(n,k) begins: %e A132311 0; %e A132311 1, 1; %e A132311 1, 1, 1; %e A132311 1, 2, 2, 1; %e A132311 1, 4, 7, 4, 1; %e A132311 1, 6, 28, 28, 6, 1; %e A132311 1, 11, 117, 318, 117, 11, 1; %e A132311 1, 14, 388, 3344, 3344, 388, 14, 1; %e A132311 1, 21, 1757, 71277, 290521, 71277, 1757, 21, 1; %e A132311 ... %Y A132311 Cf. A132312, A007318, A126257, A014631. %K A132311 nonn,tabl %O A132311 0,8 %A A132311 _Reinhard Zumkeller_, Aug 18 2007