cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132311 Triangle read by rows: T(n,k) is the number of partitions of binomial(n,k) into parts of the first n rows of Pascal's triangle, 0<=k<=n.

This page as a plain text file.
%I A132311 #11 Oct 05 2020 09:49:06
%S A132311 0,1,1,1,1,1,1,2,2,1,1,4,7,4,1,1,6,28,28,6,1,1,11,117,318,117,11,1,1,
%T A132311 14,388,3344,3344,388,14,1,1,21,1757,71277,290521,71277,1757,21,1,1,
%U A132311 29,8270,2031198,53679222,53679222,2031198,8270,29,1,1,42,40243,74464383,19465193506,147286801214,19465193506,74464383,40243,42,1
%N A132311 Triangle read by rows: T(n,k) is the number of partitions of binomial(n,k) into parts of the first n rows of Pascal's triangle, 0<=k<=n.
%C A132311 T(n,k) = T(n,n-k).
%C A132311 T(n,0) = 1 for n>0.
%C A132311 A000041(n) - 1 <= T(n,1) <= A000041(n) for n>1.
%H A132311 Alois P. Heinz, <a href="/A132311/b132311.txt">Rows n = 0..18, flattened</a>
%H A132311 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>
%e A132311 A007318(4,2) = A007318(6,1) = 6: T(4,2) = #{3+3, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1, 1+1+1+1+1+1} = 7, but T(6,1) = A000041(6) = 11.
%e A132311 Triangle T(n,k) begins:
%e A132311   0;
%e A132311   1,  1;
%e A132311   1,  1,    1;
%e A132311   1,  2,    2,     1;
%e A132311   1,  4,    7,     4,      1;
%e A132311   1,  6,   28,    28,      6,     1;
%e A132311   1, 11,  117,   318,    117,    11,    1;
%e A132311   1, 14,  388,  3344,   3344,   388,   14,  1;
%e A132311   1, 21, 1757, 71277, 290521, 71277, 1757, 21, 1;
%e A132311   ...
%Y A132311 Cf. A132312, A007318, A126257, A014631.
%K A132311 nonn,tabl
%O A132311 0,8
%A A132311 _Reinhard Zumkeller_, Aug 18 2007